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Introduction = .

. This book is an elaboration of a course given by the author at Moscow

Umvers;ty for pupils in the ninth and tenth grades. In it we discuss the
development through abstraction of the general definition of distance
and introduce a class of spaces in which the netion of distance is
" defined, the so-called metric-spaces. It will be evident from our dis-
cussion that the general concept of distance is related to a large number
of mathematjcal phenomena. e

With the &id of the concept of distance, it is possxblc to study problems
concerning the *“shortest’ path between two pomts on a surface, the
" geometric properties of multidimensional spaces, methods 8f * noise™
reduction in the coding of information, and methods of “smoothing™
errors in the results of empirical measurements, as well as many other
such topics. . . ’ ' e A VO

The concept of “dlstance, moreover, is a good 4llustration® of the

‘role played in mathematics by the generalization of specific ideas; the:

results of which at times find some rather unexpected applications.
Other good exambples of such generalizatibng which have beenr found

indispensable to many areas of mathematics may~also be cited: the

notions of function, limit, space, and Iransfarmalmn, as well as the less
familiar concepts of isomorphism, group, ring, and so on. Of these
examplesy however, the concept o{'dtstcznee geems most suited to the
type of elementary discussion required by the inexperience of our
audience, a consideration which is the chief motivation for our choice

of this particular topic. Our aim is to demonstrate by means accessible

to a wide range of readers the way in which one fruitful idea can shed
light on a wide variety of mathematical questions and, at the same time,
serve as a source of new results’and insight in some particular field of
knowledge This situation, characteristic of all of the scnences appears

vii
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viii ~ Introduction
quite often ‘in mathematics it‘i particularly striking wgyé; making
possible & clear understanding wlthout the necessity of mastering a,
myriad of confuging defails. The matenal for this book has been chosenl
with this general idea in mmd '

The first four chapters are intended to expose the reader to the
generahzatxon of the ordinary geometric definition of distance and to

the illustration of the generalized concept wWa concrete situations. .

Chapter 5 describes thé so-called space of information, a concept that
plays a major role in the theory of information and the general theory
of communication. Chapter 6'deals\with methods of coding information
which allow that information to be relat'xvely unaffected by errors in the
process of transmission. Since in all real communications devices,
" errdgs occur in a number of ways, such metheds of coding are ggsential
 for modern systems of communication and control. For examplegin the
transmissign of photographs from the far side, of the mogn by a Soviet
space vehicle, error-reducing methods of codification had to be used.
It is important to note that each of these methods involves the use of
the generalized concept of distance in the space 0 of information.

The material in chapter 7 is somewhat more compljcated; there we
ddal with an important class of spaces to which the notion of distance i§,
common. Chapter 8 describes the a%phcatwﬁ of the generalized concept
of distance to the problem of “smoothing” errors in the results of
empirical measuremergs—the problem of finding a mathematical
process which wil nearly eliminate the effect of error in experimental
data. This chaptey is -Fssentmlly an exposition of the method of /east
squares. Some knpwledge of differential calculus is necessary for an.
understanding oP¥his chapter. The rcader who has not had the necessary

. background may omit this section.

In the final chapter, the possibility of further generalization of the
concept of distance is examined. In this chapter I wish primarily to show
that it is not necessarily true thatall generalizations possess interesting

properties. It is not always easy to develop a good generalization of a,

mathematical concept. At the core of any worthwhile generalization are «
some essential propertics of the real world. In particular, the concept of
distarice is important because many essential properties of real objects
are related to their mutual disposition, which can frequently be char-
acterized by a prbperly defined concept of distance. For example,
although it is impossiblmto describe the eleatrons of an atom as point
masses, quantum mec.hamcs is nevertheless ablt to dete¥mine the
“distance”” between the two energystates of electrons. This **distance ™
is related conceptually to the “distance’™ defined in the so-called\[z
space discussed in chapter 7. - . .
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I shall consider my task complete if th:s\\book is ab}e to give the reader
~ a satisfactory understanding-of the ideas mentioned above.

I wish to take this opportunity to expms my gramude to I. M.
Yaglom, who has provided much valuablc advice conccmmg thc
improvement of this manuscnpt. \,‘ :
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C "j ‘of Mathematical
% " Concepts

i . ! s L)

- - P -

“At first glance, the title of this book may seem surprising. Every
schoolboy, it would seem, knows what distance is. Even a person who
has completely forgotten his high-school geometry and who cannot
accurately formulate a definition of distance would be quick to assert
that_he knows very well what distance is. {

But, in fact, the matter is much more cbmphg:atcd .

The word distance can take on different meanings depending upon
what part;cular space one is talking about. We are about to see that this
is true even in situations with. which we are well acquainted.

In the Euclidean plane and'in ordinary
three-dimensional Euclidean space, the
‘distance between two points M and N
is defined as the length of the line
segment MAN joining those points.

When deaiing with distances between

geographical loci on the surface of the

earth, however, we usually have in mind

the length of the smaller arc of the great

* circle joifjing these localities. The dif-

ference between these two meanings of

Fig. 1.1 ) distancc becomes particularly noticeable”

N if we calculate the distance between the

north pole N and the south pole S (see fig. 1.1), The ordinary (Euclidean)

distance een the poles is equal to the dia eter of the earth,

approximatély 8,000 miles. The distance between the poles along the

- surface of the earth is, however, greater than this by a factor of #/2; it
is about 12,500 miles.,

Tothisexample one mxght afdd that,incommerce, eventhe means of the
transportationt to be used must be taken into account in the estimation

- -
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2 ‘ The Definition of, Mathematical Ccncépzs

by may differ from the distance by train. <

‘We'can obtain another example of distance if we consider points.in
rugged terrain and défine the distance between two such points as the
time necessary for someone on foot to travel from one point to another.

It is clear that'this distance has nothing in common with the length of
the line sdgment joining two points;'for the straight line, in general, is
not the best or most possible path. Indeed, a foot traveler will calculate
the distange between two points by the time he spends in travel between
them. A

Despite differences among these means of measurement, however, it
§s evident that all meanings taken on by the word distance have some-
thing in common. A measure of “how far apart’ two objects are is

of di;iances between cities. For example, the distance between two points:
@

‘always indicated. Thus,  one may suppose that there exists some common

definition of distance “which has various interpretations in various.

concrete situations. Such a general definition will be formulated ‘in
chapter 3. But first we shall consider what, i genera! is necessary for
the definition of a mathematical concept, )

Modern mathematics is the language of natural science. Underlying
the most ;mportant mathematical ideas are spatial-temporal facts about
the world in which we live. Howevdr, the relationship between these
facts and the corresponding mathematical ideas is sometimes very
complicated. ‘ .

In every branch of mathematics are some fundamentaI concepts
which are related in our minds to certain physical images. Some of the
fundamental properties of these concepts are formulated as axioms (or
postulates); “‘truths’ that are not proved but accepted as g starting'
point. All of the remaining propositions of the given branch of mathe-
matics are derived logically from these axioms without reference to the
properties of the physical world. The very formulation of a set of axioms
expresses to some degree the relationship between intuitive knowledge
of properiies associated with these ideas and the empirically obvious
properties of their physical forms. .

Some of the most important concepts involved in geometry are the
ideas of point, straight line, plane, space, fnd so on. In a systematic
geometry course it is necessary to develop a list of most basic
properties of these concepts in the form of a set of axiéms, the basis on
which the whole structure of geometry is built.? -

Some of the principal concepts involved in algebra are those of sets of
numbers and operations on these numbers. For example, the structure

1. The first to¥ashion such an exposition of geometry was the ancient Greek
mathematician Eutlid (fourth-third century B.C.),



) ) The Definition of Mathematical Concepts .3

of the integers, rational numbers, «algebraic numbers, real numbers,
- complex numbers, and so on, arg stud¥ed. ‘ )

_ In each of the five number systems specifically mentioned above, one

1 can verify that certain fundamenfal laws concerning operations on

numbers are satisfied. These are’the commutative 18 for addition

" (@ + b =0b+ a), the associative law for addition ([@ + b] + ¢ =

. a+ [b + c]), the commutative law for multiplication (ab = ba), the

associative law for multiplication ([@b]c = a[bc]), the distributive law

(Ia + blc = ac + bc),and therulesa — a = 0,a x 1/a = 1fora # 0,

which charfc%rize the relationship between the principal operations

‘(addition and multiplication) and their inverses (subtraction and divi-

sion). All of these laws are satisfied in the number systems listed above

to Which they apply. However,'it is not always the case that a given

operation is defined in a given number system. Division is not always

possible within the integers and, therefore, 4s not weli-defjned as an

operation on the Set of integers. If a number system contains only.

_positive numbers, subtraction is not always possisle. As it happens,

certain rules for.algebraic transformation of various expressions depend

only on the prdperties listed above. For example, all of the rules for the

solution of first-degree equations and systems of such equations are

‘based upon these laws and upon the possibility of carrying out the
operation of division. » ' -

It turns out, in fact, that it is possible to study many properties of

. * N\ various number systéms as conseqtiences of the general theory of

‘ systems on whic@ﬂned operations {called addition and multiplication)

satisfy the properties listed above. Such systems are terfued commutatide

rings or fields in modern algebra (depending on whether it is always

possibie}p«carry out divjsion).? .

It is possible to view the tules for {ransformation of expressions and
for solution of equations in the case of an arﬂ%ﬁe}d or ring and to
look at the rules normally developed in high-school algebra as special
cases. o T
\'In contemporary a)gcb%a, rings and fields are usually studied as
generalizations of number systems studied in high school. The basic
properties of operations that can be carried out for integers or for
. rational numbers are set down as a starting point, #nd facts that may be

derived logically using these properties alone are stugfed.

" In taking this approach, mathematicians are interested not only in
discovering new properties of® the physical world and establishing
relationships among these properties, but aiso in clarifying properties of

2. For a definition of ring and field see Birkhoff and MacLane, A Survey of
Modern Algebra (New York: Macmillan, 1965).

-
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4 The Definition of Mathematical Concepts =

“ imaginary" wprlds developed by using axioms similar to those of the

number systems most closely related to physif.‘s reality.

. This facet of mathematics is no less importa

than the possxbzhty of

describing the physical world. The Russian mathematiciap N. I.
Lobachevskii,r by altering ome of Euclid’s postulates, created an
“imaginary’’ geometry, which, long afterwards, served as the basis of
. new ;?hysxcal cenceptg of the universe artsmg from Emstem s develop-

ment of the theory of rélativity,

. In this beok" we shall study one of the most 1mportant af
matxcal concepts—the concept of distance.

PN

® Ou first attempt will be the listing of those’ properties of dista
which are essential t0 O\elehentury geomstry. With these laws as our

* Jbasis, we shall derive the definition of a so-cal}ed-memc space and study

vatious examples of such spaces./We shall see that'such a spguﬁcally
mathematical approach.to the study of certain concepts from the point
of view.of a generahzcd concept reveals many interesting facts.

This approach--the creation of generalized concepts and the attempt

Tto describe physx@al realities, with the aid of these concepts—is: char- -

acter;st:c of modern mathematics and its fields of applicatjon. 3 From '
this point of view, t%concepf of distance prowdes a good example of

the fruitfulness of such an approach

3. We must not overleck the role play

-

in cybernetics by such genera!imd

mathematical concepts as information, autdmata theory, and algorithm,

oo

'ﬁ. | |
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2 . 'Distanceand
S o Its Properties in

< o léméntary

e eometry .

We hope to arrive at a general definition of distance by generalizing
the properties of “ordinary” distance in three-dimensional Euclidean
spage. Therefore, we shall first attempt tohst the fundamental propertxcs
-of ord{nary distance.

Let us agfee to denote the distance betweén two points M and Nin

tfAree-dimensional space——thc length of the fine segment MN—as
s d(M, N).

This notation emphasxzes the fact that the distance between M and N’

is a real number which is completely determined by points-M and N. In
"other words, distance is a real-valued function of pairs of paints. If we
characterize each point by an erdered triple of coordinates, say M =
(x,3 2) and N = (x4, y1, 21), then dxstance in threc -space becomes a
function of six variables:

» . .

“d(M,N) ="F(x, 5,2, X1, y1, 21} . *

B

. N‘ N(Xj,}’} I)) , £
1 /.»“
| /f’
M3 . /ANy
! .- =
‘ ~
1
M, -
Fobli e o
///f .
v
Y s
Mixyz) M My )
' Fig. 2,1 Fig. 22

. L. " .
With the aid of figure 2.1, onecanderive a closed algebraic expression
for this function. Pictured is a parallelepiped with sides parallel to the

- 5 [
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6 Dlstanee and Its Properties In Elcrentary Geotnetry

- . coordinate axes. We know that the square of the Iength of the diagonal - .

of a parallelepiped is equal to the sum of the squates of the lengths of
its sxdes Consequently, =

LA

o MNS MM; +MM2 +MM3 o
- * . x—xP + (-3 +@&-5),

or - . L . ) . ' ‘ L . ‘:

, d(M, N) i\/(x - %)+ (y -~ y,)“ + (z - zp)*. (2.1)
Itiseven sim’plei-ito calculate the %Lst;ap& betwecn the pomts M = (, y) i
and N = (xy,y,) in the Eucli plane (see fig. 2.2). For this
calculation, we need only note that the length of the line segment ML 1s
just |x — x|, and, similarly, that the length of the lme segment’ LN is

l)’ y1|. By the Pythagomn theﬁrem

-

MN? = ML? § LN3, s

t

5o that o ‘ /\ . e >

dM,N) =vVx -3+ f»9*.  ~ @2

Despité the importance of equations (2.1) and (2.2), the propertiés

.of distance that we shall need can bc obtained thhou: the use of a.

coordinate system. ,
These proper'txesfcan be formulated as.follows:
1. d(M, N) = d(N, M) (symmetry).
- 2. d(M, N) = 0 (nonnegativity). ‘
3. d(M, N) = 0 if and only if the points Mand N coincide (non-
degeneracy).
4, d(M,N) < dM,L) +d(L, N) for arbitrary points M, N, and L
(the triangle inequality).
Properties 1, 2, and 3 are obviously basic to Euclidean distance. They
indicate simply that the length of the segment MN is equal to the

Jength of the segment NM, that this length is always nonnegative, and

that it-is equal to zero if and only if the two endpoints of thc segment
coincide.
Property 4.becomes evident if we draw the plane determined by the

-points M, L, and N (and, therefore, containing the triangle MLN)

(fig. 2.3). Property 4 then indicates only that the length of side MN does

15
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Distance and Its Properties In Elementary Geometry 7
" not exceed the sum of the lengths of the remaining, fdes of the triangle
(hence the name friangle mequakty) In other wotds, the straight line

segment MN'i is the she{est pa;h jommg the pougts M and N
» ) , 4 .

',,,, h ,, B I
: § . . .
,;.?" *Fxs.;m *’ = Fig. 2.4 .

‘:

In faef/ he trxang[e mequahty becomes a.strict inequality d(M N) <
d(My L) +, d(L, N)] in Euclidean three-space when we introduce the
*added restriction that L does. not lie on segment MN. Hence, we can

/ conclude’ tha} the lengfh of segment MN is strictly less than the lengtis

/

b
s

of a brokendme consisting of an arbitrary finite number of segments
' whe; uniof joins the points A and N. In order to justify this conclusion

(fig. 5); we shall repeatedly decrease by one the number of segments in
the broken ling, until, ﬁnally, only two segments remain. At each step

_in this process the length of the broken line will be strictly lessened until

f

we reach the segment MN itself. Thus, in figure 2.4 we go from the
p{oken line ML,LsLgN to the broken line ML, L3N, then to the broken

line’MLyN, and finally to the segment MN. Each time the length of the

breken segment decreases, and thus the length of the original broken

.ime is strxctiy greater than the length of the segment MN.

. ~ Table 2.1

b \ ¢
-_tr T . — T

R Application of the strict
Brok_ey line Its length triangle ineguality

MLEaLoN d(M, L) + d(Ly, La) + d(La, La) d(LayLs) + $(Ls, N) > d(La, N)

+ d(Ls, N)
ML\ LaN  d(M, L) + d(Ly, Ls) + d(La, N) d(M, L) + d(L,, Ls) > d(M, Lj)
MLN diM, L) + diLa, N) d(M, Ly) + d(L;, N) > d(M, N)

MN  d(M, N)

e ——— e ———— e

~
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8 ~ Distance and Its. Pxéperties iri‘ Elementary Geémetry

Let us note that in this deduction” we use only the strict' triangle
inequality for Eqglidean space. This ¢an be best illustrated by table 2.1.
From this table it\is evident how, by replacing the's Sums in the second
column by )esser sums using the mequahtzes from the thlrd column, we
. arrive at the conclusxon that * ‘

.
-

Ll) + H(Lla L‘Z) + d(Lm‘LS) "*7 d(LS: N) > d(Mo N) .

.
~ C

If' in add:txon, we use the fact that the length ofa curve is the Im*gt .
of the lengths of broken segments approxxmatmg th curve, it is poss,:ble h
to prove the following assertion: ° F R

Of all the lfaths Jjoining points M and N, the stratght lme segment‘ MN ‘

has the smallest length. . - B
From the triangle inequality it follows that A
. , ‘ ) .
. d(L, N) = d(M, N) - d(M, L). . (2.3)

t

. %
. Let us emphasize that equality holds in the tnangie mequahty for our
three-dimensional examble if and only if the points M, N, and L lie on
the same straight line and L is located “betwecr;)” M and N (that is, L
lies on the segment MN).

Let us pow examine a d;stance function on the surface of a sphqre £
of radius r.

We define the distance between two pomts M and N on the surface of

a-sphere as the length of the smaller arc of the grear circle passigg
through the points M and N. Let us recall that a circle lying'on the
surface of a sphere is called a great circle if its center c.omc:dc/:s w‘x_? the
center of the sphere. In other words, a great circle lieson the plane
passing through the points M, N, and O (O being the ¢enter of the
sphere). It follows that each pair of distinct points M and N uniquely )
determines a great circle, since three distinct points uniquely determine
a plane. The distance dy(M, N) defined in this way, ¢learly satisfies
properties 1, 2, and 3. It is not difficult to see further that for grbitrary
points M and N on the sphere,

.

o ds(M,N) < =r, (24)

with equality holding only for points M and N lying at the endpoints of
a diameter of the sphere (for example, the North and South Poles).

-

-

17



Distance a.ud Its Pmperties in Elementary Geowetry 9

To vcnfy the fourth distance property,
it is necéssary to examine the spherical

triangle MLN (fig. 2.52;(1"11: point O is
c

the center of the sphefe.)
Itisc t . ,
‘ M, N) = re, b dAL, N) = 1B,
d(LM)=ry,
. . whcre «, B, and y are the radian measures 7
: e of dngles MON LON and LOM I
- . Fig. 2.5~ 2.
b . . - respecfively. - _ :
K * It'is well known that in such a tnhe’dral*mgle none of the planar ' o
- 'gng'ies, exceeds the suni of thc two other planar angles in pé’rhcular, - .
Lo . . - [ ‘
S asByy. L. @Y :
B Multxplymg both sides of this inequality by the radJus ¥ We ‘obtain R
q . _
) m5$+w,f,if
‘ ! . Of.& \ . “ ’ o . . . ’
. ds(M N) < dy(M, L) + ds(L N), . (2.6)
the inequality we set out to establish. . . o

Thus, all of the fundamental propert:es of ordinary distance are -
satisfied by the spherical diggnce ds(M, N).
- Itis easy to show that equahty holds in inequality (2.6) if and oniy if
two conditions are satxsﬁed,. first, that the’ point L is located on the
- same great circle as the ‘points M and N; and second, that L lies
““between’” M and N—on the smaller arc of the great circle dctermmcd
by ‘M and N.
~ This fol ows from the fact that mequahty (2.6) becomes an equality
only wheri equality holds in (2.5). But this can occur only when the
trihedral angle degenergjes into a planar one—that is, when the points
M, N and L lie on a plane passing through the center O of the sphere
and ray OL is located between rays OM and G#V. But this implies that =)
the point L lies on the Smaller arc of the great circle joining points M-
and N. y;
It is evident that the smaller arc of the great circle joining pomts M
and N possesses properties analogous to those of the straight lmc
segment-in’ordinary (nonspherical Euclidean) geometry. In particular, » ‘s
(1) through a pair of arbitrary distinct points there passes exactly one -
such arc (with the exception of the case where the pomts M and N lie at

the erddpoints of a diameter of the sphere—that is, where they are
~

} | / Tk
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antipodal—in which case both arcs of anygreat circle joirling M and N
are of equal length, and. there are mﬁmtcly many such circles); 2) for
any point 2 lying on such an arc joining the poiats Mand N, t.hc equation

AR ds(ML)+ds(LN)~ds(MN)

holds. / . ‘
Let ug'note at this pomt an xm"portant cxtcnsron of a fact proven in

-Euchdean thme-spacc For ordinary distance we havc shown that the *

length of any broken line joining two pomts M and Nes greater than
the distance Between the.points Af and N, that is, than the length of the’
segment AMN. Here we base our reasoning oply on the triangle in-

.equaljty and on the fact that equality holds ohly if the points M, L, and
- Ndie op the same segment ‘(with L *““between’” M ‘and N). Since the

triangleinequality is also true for the distance fungtion we have defined _
on the sphere, with the ordinary line segment corrcspondhg herg to tbc
smaller a}c of.a great circle, it is apparent that an anajogous assertion
is true on the sphere: If the points M and N are joined by a broken
sequence of arcs of great circles (fig. 2. §) in which. successive arcs are
joined by a common endpoint, then the total length of such a *“spherical
broken line”’ is'greater than the distance dy(M, N),? -

We suggest that the reader. write up a full proof of this assemon in
analogy with the proof for ordinary distance carried out above. This
assertion can easily be generalized (using limit arguments) in the
following form: The length of the smaller arc of the great circle joining
the points M and N is less than the length of any other path on the
sphere connecting #hese points.

Thus, we have examined two examples of disfance and determmed
that their fundamental propemes are the same. Auxnfiary properﬁes
such as (2.4) (p. 8), properties peculiar
to the particular cxamplc play a much
smaller role.

take -the fundamental properties of

study various spdaces in which a distance
» satisfying these axioms is defined. In

this chapter we have ‘examined two

elementary examples of such spaces:

ordinary Euclidean three-space and the
Fig. 2.6 surface of the sphere

1. We must assume here, of course, that this sequence actually is “*broken';
that is, that it does not lie entirely on thé smaller arc of the great circle joining the
points M and N. -

Therefore, our next step will be to_,

distance (1, 2, 3, and 4) as axioms and to |

W

-
~
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We shall begm with an exp}anatxon of hat a set is, L:kc the notionof = - -«
" point in geometry, the concept of set is fi §ndamcnta] and yet difficuldto
define. The word set is used in mathematics to indicate a collection of
objects called elements of the'set. : g
The concept of set has important applications i in any situation where
~ a general property is assigned to certain objects. When these objects
fall into some class according to some sost of rule, they form a set. We
shall say that a set contains each of its elements, and that each element
of a given set is contained in it. A set is considered specified if for any
arbxtrary object it is possible to determine whether or not it is contamed
in the given set.? ' ‘

Let us consider, for exampie the set of all integers. The s1'm is not
contained in this set as it is not a number but an object of an entirely
different sorf. The number = is not contained in this 3et, for it is not
integral. On the other hand, the roots of the equationx? — 3x + 2 =0
are contained in this set. It is possible to examine the set of all planets

~of the solar system, where wep;&ﬁne planets as bodies moving around

. the sun in a closed orbit and weighing no less than one ton. The sun is
not contained in this set, since it does not (strictly) move around itself.

The earth is contained in this set. Thi&'Soviet rocket launched from the

earth into an orbit about the sun on January 2, 1959, is also contained

in this set; it is an artificial planet.

; Let E be some set and N one of its elements. This relation i written

", « symbolically as N € E and is read *“ N is an element of E.”” A symbolic

1. The question of what sort of method of determination is to be considered

“effective™ is of great interest in mathematical logic and philosophy, but it will

not concern us here. An analogous difficulty is inherent in all formal classification

- systems. As an example, we may cite the biological dxfﬁcult‘y in defining what sort
of anthropomorphic beings bc!aqg to the class Hcmo sapiens.

1’

-~
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12 The Definition of\a Metric Space and of Distance
notation of the type K= {L,M, N,...} is also used, where each
elenien{of the set is enymerated within the brackets. Thus, the set E,,

consistfng of all of the capitals of the Soviet republics, could be written
symbohcaﬂy as E, = {Moscow, Kiev, Minsk, Thilisi, Yerevan, Bakuy,

. Riga, Talljnn, Vilnius, Tashkent, Alma-Ata, Frunze, Ashkhabad,
Dyushambe, Kishinev}. . v
df every element of a set £ is at tHe same time an element of a set E;,

the set E is called a subset of the set E;. This is writtenas E < E; (“Eis

containedin £;’*). For example, the' sef of all mtegers is a subset of the -

set of all real numbers.* ( g
A set E i\ called finite if each of its elements can bethssociated thh
(mapped to) a different element of 'some set of the form E, = {1,2,

3.0, n}. In’ other words; for a set E to Be finite, therg mukxist a
funct:on Ffrom E to uch that for each pair ‘of elements a and bin
- K, F(a) = F(b) imphes a = b. For ex‘ample, the set E, of capitals of the
~ Soviet republics is ﬁmte, since it is possible to enumerate this set usmg
the elements of the sef Ey, as is evxdent from table 3.1.

-

Table 3.1

oz

Moscow 1 Yerevan 5 Vilnius 9  Ashkhabad 13
Kiev 2 Baku @ 6 Tashkent 10 Dyushambe 14
Minsk 3 Riga 7 Alma-Ata 11 Kishiney 15
Thilisi 4 Tallinn 8 Frunze 12

Y

We are now in a position to give a definition of a metric space.

A metric space (E, d) is a set £ in which for each pair of elements M .

and N a real number d(M, N) is defined and the following properties
are satisfied:

1. d(M,N) = d(N, M) (symmetry).

2. d(M, N) = 0 (nonnegativity),

3. dM,N) =0 if and only if M and N are the same element

(nondegeneracy).

4. d(M,N) < dM,L) + d(L,N) _for each triple (M,N,L) o

elements of the séb'E (triangle inequality).

We shall call the elements of the set E the points of the space
A metric space is thus completely determined by the choice of
and the function d—the distance function in the space. For tie sake of
simplicity, we shall denote a given space by the same letter as its
corresponding set, although, in fact, the space and the set of its elements

" are quite different objects. In fact, it is often possible to define more
- than one distance function on a space £, each such function, along with

)
*
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the set £, determines a different metric space. In chapter’4 we shall
construct new deﬁmtxons of distance (and thus new metnc spaces) in

the Plane.

In place of the four distancc axioms listed above, it is poss:blc to

- " intreduce only two (supposmg as before that d(M, N)is a real number):,

1. d(M, N) = 0if-and only if the points M and N are the samc

2, d(M,N) < dM, L) + d(N, L).

“First of all, these properties follow from propegties 1, 2,3,and 4, as
property 1’ js property 3, and propcrty 2’ follows from the 1nang1e

.~ inequality and <ongition 1.

- ing in 2’ the positions of points M and N and carrying out the anaiogaus .

.. equalities we get the axiom of symmetry (1):

On the other hang, from p\ropemcs 1'\{51 2 alone it is possxblc to
deducg all of the conditions 1 },2 3, and 4.
To provc thxs, et us supposc first that in 2', L =‘MZ so that -

o o
d(M, N)sd(M M) + AN, M), -

-

By 1',d(M, M) = 0. Thercfore, dM,N) < d(N M}. By interchang-

argument, we sec¢ that d(N, M) < d(M, N). From these last two in-

dM. NY = dON, M) B

Substituting M for N and N for L in 2', we get

d(M, M) < dM, N) + d(M, N) = 2dM, N),

-

so that, by virtue of 1,

0 < 2d(M, N), R

implyisig

0 < dpM, N),

which is property 2’J§‘u.onnegatw1ty) Again, using the condmon -of
symmetry which we proved above, we can mterchange N and L in the
second term on the right side of 2’ and get the triangle inequality 4.
Thus, the system of axioms {’ and 2’ is equivalent to the system 1, 2,3,
and 4. It is more convenient to use the latter system, howevexr as it

. gives in a clearer form the same fundamental properties of distance.

Still, 1t is interesting to note that all of these properties can be embodied
in a pair of axioms.

00
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From the point of view of the dcﬁmtxon which we have mtroduced
the content of the preceding chapter might be dcscnbtd as a proof that
the set of points in three-dimensional Euchdean"spacc along with a
distance function defined as the length of the line scgmcnt joining a
given pair of points is a metri space. In the end of the same chapter, -

‘we established that the set of points on the surface of a sphere, together

with the distance fufiction dg, form a metric space.

We can get another exaniple of a metric space if we consider the set |

of points of some surface » in three~dimensional space and define the
distance dy(M, N) as the minimum length of the paths passing along
the surface = and joining the.points M and N.2 Tpc/ﬁfst three properties
of distance are then immediately evident, ‘ ‘
The triangle inequality can be verified in the following manner: Leat
us connect the points M and L, as well as the points L and N, by a path

- of the shortest possible length. Let us then connect the points M and N

using such minimal paths ML and LN. Clearly, the length of this path
cannot be less than the length of the shortest path joining M and N,
since this path is itself a path jqaing M and N, and thus must be at
least as long as the shortest such path. Since the length of this path is

dy(M, L) + d(L, N), and the length of the shortest path ‘between M
and N is d(M, N), the desired relation follows:

d 8, N) < d(M, L) + d(L, N). BRERY) |

Let us note that on the surface of the sphere the shortest path joining
two points is the smaller arc of the great circle determined by them; this
was proved at the end of the preceding chapter. The proof was based on
the fact that the triangle inequality was obtained by an independent
argument concerned only with the space determined by the surface of a
sphere, and on our proof that equality holds in the triangle inequality if
and only if L lies *between™ M and N on the sm'ailer arc of a great
circle.

It is useful to introduce the concept qf line segment in an arbitrary
metric space. We shall define the line segmcm joining the points M and
N in a metric space £ to be the set £y y of! pomts 1. whictysatisfy the
equality '

’ d(M, N) = d(M, L) + d(L, N) (3.2)

It is easy to see that for ordinary distance in the plane or in three-space,
the set Ey y coincides with the line segment MN in the ordinary sense of

‘2. For the sake of simplicity, we suppose that for each pair of points M and N

™ on a given surface =, there exists some shortest path between M and N. Using

certain assumptions concerning the properties of the surface #, it is possible to
prove this supposition. PR

'; .j “
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. the term. On the sphere S with the distance function dj introduced in
chapter 2, the segment E, y is the smaller arc of the great circle joining
the points M and N if M and N do not lie on the same diameter, and the
* whole sphere if the points M and N are antipodal. - ' ~
We leave it for the reader to verify that with the distance 4,(M, N)
o mgroduced above, the line segment E,, y (if it is indeed g unique path)
*. is the shortest path (the so-called geodes:c Ime) joinjng the pomts M
and N. ~
It is also possible To generalize to an arbxtrary metric space E the
‘*  concept of the sphere Sy, with center M and radms r as the set of points’
~ Nfor which d(M,N)=r.
" Inthe plane this nation corrgsponds to that ofa clrcic in three-spaec
to that of the ordinary spher:—?‘or the metric (distance function) dg, to
_circles on the sphere §. .
As still another (trivial) example of a metric space, we take an arbi- -
‘trary set E and define the distance between two points M and N to be
zero if they comcxde and one otherwise. It is easy to see that all of the
necessary conditions are atisfied by this definition:
Various other examples of metric spaces will be examined in chapter 4.
In a metric space E it is always possible to define the concept of
convergence to a limit for & sequence contained in E. Roughly speaking, -
_ a sequence of pmnts in the metric space E, (Ly, Loy ...y Lps . 1)
’ denoted by (L,)E.;, is said to converge to the point Le E if, begmnmg
' with some L, the distance between' members of the sequence and the
point L (the limit) becomes smaller than any prevmusly chosen positive .
' numbcr
“ Formally, the sequence (L,)g-, is said to converge to L if for every
positive real number « it is possibje to choose a positive integer 'i(‘) Tzh
that the condition k > n(e) implies

d(L L) <ze.”
In keeping with the ordinary notation, we w;i'te

L= hm Lk'

k-
- It is easy to verify that for the ‘metric space consisting o&l real
numbers R with a metric 4 deﬁned by '
'
d(xgy) = [X - yi
oursgeneral definition of hmxt comcxdes thh the usual one,
-

.\ . v
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16 The Definition of a Metric Space and of Distance

For the metric space R®, Euclidean three-space with the usual metric, -
the concept of limit just defined allows us to state clearly what we'mean
by the limit of a sequence of points in three-space.

Let us note that in this case the set of points M for which dL,M)<e
,forms the interior of a sphere with center L .and radius e. A sequence of
points (L,){., thus converges to the point L if and only if, for each

¥ £ > 0, there exists some integer #(e) such that all the points L, of the

' sequence with k > #(e) lie in the interior of the sphere with center L and

radius .

THEOREM. If the sequence of elements Ly, Ly, . . ., L., . .. of the metric
space E converges to a limit E, then for each s > 0 there.exists an integer
m(e) such that the conditions®k = m(e) and k' = m(e) imply that

‘ - d(Lk, L) <e . ~ e

Proof. By the definition of limit, it is possibje to choose an integer
-* #i(e/2) such that k > n(ef2) and k' = n(e/2) willlimply thc inequalities

M & ' . & ‘ N
- d(L, L) < 5; d(Ly, L) < 3 A

But, by the triangle inequality and the axiom of symmetry,

A - o
v

» ALy L) < d(Lip L) + d(L, L) = d{Liy L) 4 d(Lies 1) < 5 + 5 =
A‘

In other words, if we Jet mey = n(c)2), then fo# k > m(e)ﬁ k' 2 me),
the following inequality holds:
] i

e

* d(Lk, Lkl) < €.

This proves the theorem. To paraphrase slightly, we have proved that
if elements of a sequence become arbitrarily “clase’ ta a given limit,
they also become arbitrarily “close’ to eachaffer. .

If in the space £ the converse of the above theorcm ho!ds then £ 1s
Lailed complete.

It is convenient to give the definition of a u)mpleie metric space in
the following form: A sequence of points (L,)S.; contained in the
metric space £ is said to be a Cauchy sequence if for each £ > 0, there
exists an integer m(e) such that k 2 m(e) and k' 2 m(%impiies

\

d(Lk, Lk') < &

LN
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The metric space E is called complete if cach Cauchy sequence in E

converges to a point ef E. ’
‘ The real line, the plane, and three-space with their usual memcs are

. " Complete metrxc spaces. : ' -

The qucstxon of whether or not a given metric space is complete is
fundamental to the apphcanon of these concepts in mathematical
analysis, but we shall not concerg ourselves with this questmn at the
present time.3 :

Pwo metric spaces are said to be isomerric if it is possible to set up a
one-to-one correspondence between them such that'the d,)stanoe between
a pair of points in one of the spaces is the same as that between the

corresponding points in the other space. From the point of view qf the

theory of metnc spaces, two xsomemc spaces may be consxdered'
xdemzcal '

As an example, let the space E be the plane along with the ordinary
metric, and the space E’ the get of complex numbers z.with a metric d’
defined by the formula - S A ‘

dzz)=lz— 4. R

The usual method of picturing the complex numbers as points on the
plane establishes the existence of a one-to-one correspondence between
the two spaces. It is easy to check that this correspondence is an
isometry, since, if we set z = x + yiand z, = x; + y;/, the quantity

4
&

z -z = V=2 + (7 = )

is equal to the distance between the corresponding points of the plane.
The definitions of metric space and of distance given here are not the

" most general encountered in mathematics. There are various generaliza-
tions of this«concept. For instance, it would seem possible to assign

infinite distance to somie pairs of points, while still preserving all of the

¥ propert:es of dxstanceﬁhxs generalization, as we shall see in chapter 9,

is not particularly intercsting. In many mathematical problems it is

® necessary to deal with a. mélrie-in which the property of symmetry is -

. lacking. We shall study the properties of such a metric in chapter 9. In
the theory of relativity, it is necessary to consideg a distance function
which can take on even imaginary values. The properties of such a

distance are quite unique, but we shall not touch upon them in this’

book.

" 3. The notion of completeness is of most importance to mathematical analysis
when applied to metric spaces whose points are functions. See, for example, the
definition of the space € at thg end of chapter 7.

24 :
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In this chaptcr we shall look at a number of examples of mctnc
spaces with r;latwciy unusual metrics.

* Many interesting metric spaces on the plane arise out of considera-

tion of differently defined distance functions. We shall represent the

points of the plane in this discussion with the aid of a coordinate system

+ chosen once and for all so that each point of the plane is given by an

" ordered pair of coordinates (x, ». It wﬂl be convgmcnt to dcnote a

point of the plane as M = (x, y).,
The metric space / results when we define the distance between the

points M = (x, y) and N = (x;, y;) by the formula
M N =|x—x|+]y-nl. =« @I

Figure 2.2 (p. 5) shows that d,(M, N) is the sum of the lengths of the
Vlegs of the triangle MLN, in which MN is the hypotenuse and the legs
ML and LN are parallel to the axes of the coordinate system. Since the -
length of the hypotenuse cannot exceed the sum of the lengths of the-
legs, we have always ' '

dM, N) < di(M,N), 42

where d(M, N) is the usual ‘planar-distance. The inequality (4.2)
becomes.an equality only when the line segment MN is either horizontal
or vertical—that is, when it is para#iel to one of the coordinate axes.
If in inequality (4.2) we substitute the algebraic expressions for the
corresponding distance functions (4.1) and (2.2), we get the inequality

VE-xPF +(y—»Pslx—x|+|y—nl.
Setting x,o= y, = 0, we get the simple but important inequality

VE TR < x4 @.3)

Ao . ' 18 - "
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Some Examples of Metric Spaces . ‘ 19
Axioms 1,2, and 3 are obviously satisfied by the metric di(M, N). In

order to verify that axiom 4 is-also satisfied, we examine three points
= (x,y), N = (x1, 1), and L = (%3, ys) and write the clementary

}dennty » . °
. 1x—x1{+}y yxl = |x — X3 + X3 — x| + i}’ - Yatya— nil.

¢ Lo 4.4) |

Using the fact that for arbitrary real numbers a and b, la + B8] <
la} ¥ |b], from (4. 4) we get the inequality

=Xl + 1y =yl S 1% = xa + xa — x| + |y = yol + |32 — pl,
which is the desired relation
d(M,N) < di(M, L) + d,(L, N). 4.5

And so the triangle inequality holds for the space I

The distance d;(M, N) can be interpreted as the length of a a minimal
path traversed by a particle moving from M to N that is constrained to
move only along line segments parallel to the coordinate axes. Fxgurc
4.1 makes it evident that there are many (in fact, infinitely many) such
minimal paths.

It is not hard to show thai.this statement is equivalent to saying that
in the space / there exist infinitely many distinct line segments* joining
the points M and N (except in the case where the points M and N are
situated on the same vertical or horizontal line); for a line segment in
the space / joining the points M and N is any broken line joining M and
N which consists only of vertical and horizontal lines which do not
intersect any vertical or horizontal line more than once. (We suggest
that the reafler prove this as an exercise.) ' { .

- N
, O
N i )
* !
|
- N
_} — _— 4 s
-
]
F-—-—J
= __J M
]
————— d 0 (O i
jyr. P -
Fig. 4.1 . Fig. 4.2

1. In the sense of the definition introduced in Chapter 3.
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One gets a still more natural picture by considering the metric space
C consisting of all the lattice points of some rectangular lattice in the
plane (fig. 4.2) with the metric defined by fgrmula (4.1). Points of shis
‘space can be viewed as the intepsectians of the streets of a perfectly
planned city. The distance di(M, N) is in this case the length of the
shortest path which one can take along the streets of the ¢ity from the
intersection M to the intersection N, without taking any shortcuts
through houses.

In the following example, the space C will consxst of points in the
plane with the metric d,? defined by the formula

. | ; do(M, N) = max (iéé — x|, |y - yd), (4.6)

where M has coordinates (x, y) and N has coordinates (x,, _y,) Geo-'~-
metrically (fig. 2.2), the distance d(M, N) can be interpreted as the
~ length of the larger leg of the trxangle MLN. As this length is always less*
than that of the hypotenuse (or equal to it in the case of a degcncrate
triangle), we have

do(M, N) < dM, N), . @7

where d(/i!, N) is the usual planar disténcc. ‘A\gaih,' setting x, = y; = 0,
we get the algebraic inequality '

] max (|x/], | y]) < (4.8)
Q%
| For the metric do, axioms [, 2, a are again quite ‘evident. To
prove the triangle inequality, suppose we have three arbitrary points
= (x,y), N =(x5,»1), and L = (x3, y2). We may assume that
|x — x;] = |y — y1|.* This means that :
n &
do(M, N) = max (|x — x|, |y — 1)) = |3 — x|
. =kX“:XQ+XQ"‘x1‘-
. J ’
‘.. Consequently, ,

do(M, N) < |x — x3] + |x3 — X1} . . (49

2. The meaning of the symbol w will be made clear on page 22.

3. We can make this assumption without Joss uf generality, for in the opposite
case (Jx — x| < |y — y:i]), we interchange the roles of the x and y coordinates
and carry out the same proof.
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Moreover, it is evident that

IS

_Ix - Xgi < max(!x - Xgl, ty - .Yai) = dw(M’ L) H } (4 10)
1x2 — x| < max (Jxg — X1y |¥a = ml) =du(L,N).] T

‘Combining (4.9) and (4.10), we get

“do(M,N) < do(M, L) + du(L, N), @1

the desxred result. SR _

We have already noted that in an arbxtrary mctnc space it is poss:b!e
to introduce the conecept of a sphere of radius r with center M, defined
as the set of points A for which .

dM,N)=r. (4.12)

f the distance function 4 is the
ordinary distance on the plane, this
sphete is just the circle with center M
and radius r. '

For three-space with the ordinary
metric, the sphere defintd by (4.12) is
just the ordinary sphere with center M
and radius r.

In the space / the sphere is a square
with center M and diagonals of length
Fig. 4.3 2r parallel to the coordinate axes.

In the space C the sphere is also a
square with center M, but with sides of length 2r parallel to the co-
ordinate axes. In figure 4.3 we have pictured the sphere of radius r in
the spaces / and C and in the usual sense. The proof that spheres in /_
and C have the form indicated above is left as an exercise for the reader.

An interesting class of metric spaces is obtained when we define a
metric d, on the plane by the formuia

\

‘.

dfM,N) = V|x — x;|? + |y — .;xi“. (4.13)

The spaces so obtained are called /; spaces.
Axioms 1,2, and 3 for a metri¢ d,, are obvious. The, triangle inequality
follows from Minkowski's inequality:*

Vla + al” + b+ b7 < Val® + b7 + ¥a,[? + b7, (444)

4. A proof of Minkowsky's inequality can be found in Geoffrey H. Hardy,
John E. Littlewood, and George Polya, Inegualities (Capbridge: The University
Press, 1934).
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whxch istrue forp > 1, if for the points M = (x, y), N = (x;, y1), and
= (X2, ya), We take

G=X—X2; G =X3—%;, b=y—y;; b=y—y.

For p < 1, the tnangle mequa.hty is not true; the inequality in (4.14) is
reversed. .

It is easy to see that for p = 1 the distance d, (M, N) = d,(M, N),
whereas for p = 2 the distance d,(M, N) is just the usual distance
d(M, N). Thus, the space / coincides with the space l;, and the plane
with the usual metric is the space /..

We shall now show that the .distance d,(M, N) convérges to the
distance d,(M, N) as p — c0.

Let us first examine the casc [x — x;] > |y — y,|. Then do(M, N) =
|x — x,;]. On the other hand, transfomung (4.13), we have

-~

L

. ay(M,N) = [x — x| 2[1 + E:—i’:r @.15)

Notxcmg 1hat for p > 1, N

' — 2
s J: + .
- X=X

“ and that the’ quantity {y — y)(x + x)]?P—>0-as p—>oo (since
Ix — x| > |y — 3] and, thus, [y — yil/lx = x| = [(y = y:)
(x — x| < 1), we get :

)

— P
<1+ {y———y‘[
Jx—x

~

-

: ' lim J L+ fi’—}’i 1.
P
. Using (4.15), we see that
r i B3 N -
" lim dy(M, N) = |x — x| = du(M, N). " (4.16)
pex

‘_ Analogously, for |x — x,] < |y - y;|, we obtain

—~ ; i (M N) = gyl = deM M) @17
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Fmaﬂy, let us examine the case jx — x,l |» — |- Then .

d,,(M, N=x-xP=ix-x¥2. |,

© Since livh ¥2 =1, wehavemthxscase

pr @

lim dy(M, N) = |x — x;| = du(M, N) . _ (4.18)

- And so in all three cases, by (4 16), (4.17), and (4.18), we get

lim d(M, N) = Q(M N), (4.19)

the desired result.
s Consequently, it is reasonable to denote the space C by the symbo!
" 1., since the distance d.(M, N) in this space 1s the hm:t of the distances

,,(M N) as p approaches infinity. -

Figure 44 dcpxcts l, spheres (all
‘having the same centdr M) for various
values of p. The [, metric spaces are also
_called Minkowski spaces. In chapter 7
we shall examine mnitxdxmens:onai
Minkowski spaces.

We leave it to the reader to formulate
-a simple definition of line segment for I,
spaces.

We can obtain an mtcrcstmg class of
metric spaces in the plane by defining
distance as the minimum time required
Fig. 4.4 to travel from M to N with some given

restrictions on.the paths which may be

taken.

Making no restrictions, we can obtain the usual distance if the .
shortest path from M to N is taken by a point moving with a constant
velocity of one. :

We can obtain the metric space / if we require this point to move again

_ with constant velocity but only alang line segments parallci to the

coordinate axes. '

But we get a new example if (see fig. 4.5) we consider the map of the
Moscow metropojitan area and suppose that a traveler may go from
point M to point N in the following manner.

‘v
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M N

* Fig. 4.5

If the same subway station is the nearest one to both points, the
« . shortest route is on foot. If this is not the case, the traveler walks (by

-

»

the shortest route) to the station closest to the point of departure M,
 rides by the shortest route to the station closest to the point N, and from
there malks to N. If two or more subway stations are equally close to M
or N, the route for which the riding time will be least is chosen. Figure 4.5
\g:ws two pairs of points, (M, N)and (M,, N,); to gofrom M to N one
st walk, whereas to go from M, to N, one must thke a subway. Let
us suppose that someone living between the Rizhskii and Botanic
stations wants to go somewhere in the neighborhood of the Zemlyanii
Val; then it would be necessary to get on at the Botanic station and go
to either the Lermontov station or the Kursk station. It is easy to see
that the metric d(M, N) defined in this way is, in general, different from
the usual geometric distance. In fact, if the point Q is situated near a
heloport (either Dynamo or Acroport), the point £ near Volokolamskii
Highway, and the point R near Valovaya Street (near the Paveletskii
subway station) as in figure 4.5, then in the sense of ordinary distance
the point P is somewhat closer to the point Q thanis R:

d(P, Q) < d(Q, R).

It is evident from figure 4.5, however, that

(P, Q) > d(Q, R).

14
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Actually, if one cannot taiéel;»;l taxi, it is possible to travel from the

~heloport fo Valovaya Street in less time than it takes to go from the
~ helaport to Volokol fi Higltway. S ‘ '

‘For the metric d,, gXiom 1 (the axiom of symmetry) is nontriviak.
The equality | ! i o
Cammy =ama 0§
‘indicates that the time speni in going from M to N as quickly aé‘passihlc -

is the same as that spent going from N to M. This is more or less true if
one uses only the subway or travels only on foot. But if taxis are allowed,

-this is no longertrue; it is one thing to try to get a taxi at a taxi stand

and an entirely different thing to tfy to get one in some remote neighbor~ -
ood or at the Kursk station when the trains are coming in.
Axioms 2 and 3 for the metric 4, are evident. The reader will have no

: trouble proving the triangle inequality (axiom 4) for himself if he

recalls'the.proof of this axiom for the metric d; in chapter 3.
In further investigation into the properties of metric spaces, it will be

- useful to introduce the concept of a Dirichlet region. Let E be a metric
. space and L, Ly, . .., L, points in E. We define the Dirichlet region of

the point L, to be the set of all points N for which

'

d(L,N)'s d(L,N) (4.20)

for all j # i, and denote this set by D,. In other words, the Dirichlet -
region D, is the set of points which are at least as close to the point L,
as to any of the other given points L,. It is clear that the Dirichlet region
is determined by the choice of the points L, L;, . . ., L, and of the given
poirt L;. We shall now look at examples of Dirichlet regions in various
metric spaces.

——— .
Lo
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X
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Let us first consider the plane with the usual metric d; and two points
L, and L,. We join these points by the line segment L, L, (fig. 4.6) and
draw a perpendicular through its midpoint. This perpendicular divides
the plane into two closed half-planes, whxch are the Dirichlet rcusicc
the points L, and L,. .

Let us now consider three points L,, Lg, and Ls in the plane, again
with the usual metyic. In figure 4.7 we havg constructed the Dirichlet
regions for these three points and marked them off with heavy lines.
The method of construction is clear from the diagram.

Let us now examine two points L, and L., in the plane wnth the metric
d,(M, N) (that is, in the space /). For thE sgke of clarity, we shall again
visualize a city divided into squares. The Dirichlet regions consist of
those intersections from which the route through the city to L, will be
shorter than that to L, and vice versa, These regions are marked off in
figure 4.8 by a heavy line. Figure 4.9 shows the corresponding partition
for the space C. We suggest that the reader try to derive the general rule
for constructing the Dirichlet regions for n pojnts in the spaces /and C
by examining Dirichlet regions for two points and for three points.

8
— -
L2
i 1 S S, T I~
— ~~<r—¢—24 —— 4 t— 44— — 4 4 — .
4+ 4+ 4 B _
B N 7]

Ly ) L . . Y
_‘q - & ———— e —— -4
-3 - -+ - 4‘. +—4-— - L

4 b 4—t - L
DU _ - «11 - R
S RN ,—{»-« At — oo 4= k {
Fig. 4.8 Fig. 4.9

Turning again to figure 4.5, we see that if we partition the space into
Dirichlet regions for the pair of points £ and R, then the point Q falls
into the Dirichlet region of the point R. We suggest that the reader draw
this partition into Dirichlet regions. It is important to note that this
partition differs greatly from those in figures 4.6, 4.8, and 4.9.
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When we speak of communication, we usually mean some sort of
r transmission of information. In this sense, communication appears in
the form of books, letters, telegrams, musical pieces (recorded or

- written in musical notation), computer cards, signals directing the -

- flight and landing of space ships, molecules of deoxyribonucleic acid
(DNA) .which transmit genetic mformatmn from parents to offspring,
and so on. ; :

Questions concerning the transmtssmn and codxﬁcatxon of informa-

tion are examined in the theory of information.! In the study of this -

‘theory, methods for determining the “quantity of information” con-
tained in a given message are developed; this ;*quantity” can itself be
encoded as information. We frequently encounter this situation in our
daily lives; in composing a telegram we try to use the minimum number
of words possible without destroying the meaning (that is, while
_ preserving the quantity of information).
The revetse situation arises when, in an examination or in a seminar,
a poorly prepared student amplifies his message, trying to express the
small amount of information which he has on his topic in a sufficiently
impressive quantity of words.
A surplus of communication relative to the quantity of information to

" - be transmitted ts, however, not always harmful. Such rédundancy can

be useful when interference arises in the transmission of information.
For example, when we have a bad connection on the telephone, we
are forced to repeat individual words. In conveying strange or difficult

1. A good reference for an account of information theory is A. M. Yaglom and
1. M. Yaglogy, Muroyatnost’ i informatsiya [Probability and Informationf{Moscow:
" State Publishing House of Physics and Mathematics Literature, / A transia-
tion of this work will be included in the Survey of Recent East Eumpcan Mathe-
matical Literature of the Umversxty of Chicago.

27
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names, we use the following alphabetical device: In communicating the
name **Pavsikakii’’ over the telephone, for example, we might say,
“Peter, Anne, Victor, Susan, Irene, Karen, Albert, Kay, Ivan, Ida.”

In this chapter and in the next we shall study methods of error-
stabilizing codification of information, without concerning ourselves
with specific questions relating to the theory of information. In other
wards, we shall study methods of writing down messages that allow us
to correct automatically any errors that arise, provided that they are not
.too numerous. These methods are closely connected with the question
“of the possibility of defining a metric on the so-called space§pf in-
formation. . S

The idea of these methods is.something we make use of frequently in
everyday life —for instance, in reading bogks with printing errors and
receiving telegrams with mistakes. If we read the word *“sauce pin” in
a book, we need not look in any ““dictiosiary of mistakes’ in order to
guess its meaning, There is very little.¢ &.hance that the authot meant the

word “telegraph ™ here. For if he did, we "would be dealing with eight

misprints in a row, whereas if the word ““sauce pan’’ was meant, there
would be only one misprint,? . ‘

Still, there are curious examplés where a totally dxﬁ'emnt word can
arise from a mistake in orly one etter. For example, the Russian word
“korona’ (*crown’’) could be mMtakenly written as “ korova’ (“cow”’
or as “vorona’ (“crow” ' '

Indeed, a well-known anecdote is based on this situation. A Russian
provincial newspaper is said to have printed this sentence in an article
about the coronation of Nicholas II: *“The Metropolitan placed the
crow on His Highness's head.”” The next day a correction was published:
““The Metropolitan placed the cow on His Highness's head.”

Clearly, even here it is quite easy to determine the true meaning of the
message from the context.

Analogously, a misprint ih a musical composxtmn can frequently be

"discovered because of its false sound and can be corrected by the laws
of harmony. T

One must mention that errors can arise not ognly in transmission of
information, but also during its storage, for example, in the memory of
an electronic computer. The problem of discovering the correct message
is the same for errors occurring during the storage of the message as for
those arising during transmission.

Every type of messageis written with the aid of some set of symbols.

The set of symbols used forms an alphabet %. We assume that this

2. Of course, sometimes there are more probable strings of misprints, arising
from 8 typist's or typesetter's misunderstanding of the sense of certain words.

-
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'alphabe; is given beforehand and consists of a finite number of symbols.

For example, the alphabet might consist of all Russian letters, a space,
and punctuation marks. Using this alphabet, it is possible to write-any
arbitrary Russian sentence. Another example of an alphabet is the set

| of all decimal digits, algebraic symbols, punctuation marks, and Latin
. and Greek letters. Using such an alphabet, gne can write down the most

divetse of mathematical formulas. -
Stﬂi another example is the binary alphabct—a set of two symbols,
= {0, 1}. Using such an slphabet, we can write any number in the
bmary system.
1t is easily verified that any wholc number x can be wnttcn in the
form :

x =g 2" 8,2t o+ 82 + 2, (5.1

where the quantities ¢ take on a value of 0 or 1.

Thus, to transmit information about an integer x, it suffices to trans- .
mit a finite sequence of symbols of the alphabet 3: sy, 5_1, .. ., 21, %0
In order to separatc the information about two different numbers it is
necessary, either to introduce a special symbol for the end of a number
or to transmit only sequences of some standard length.?

The latter method is the one actually used on computers, where the
binary sequences to be stored in mé;mory usually have a standard length
corresponding to the. number of *“memory cells” available jin the
machine. In computers now being manufactured, however, tAis principle
is being departed from more and more, with memories of variable
length being used. : ‘

Formula (5.1) is analogous to the well-known formula

= q,10" + 05_1105-1 + -+ @10 + gy, (52)

where a,, @, _1, . . ., 41, do are the digits in the decimal representation of

. the number x. It is easy to genesglize equality (5.1) to numbers which

are not integers exactly as is done for decimal fractions.

Let us determine the connection between the number n and the value
of xin (5.1). Clearly, if the leading coefficient is equal to zero, the leading
term can be discarded; this process can be carried out repeatedly until

3. There are more complicated methods for separating the meaningful units
(words) in an arbitrary glphabet. See, for example, the article by A. A. Sardinas
and George Patterson in Kiberneticheskii sbornik [Journal of Cybernetics}, no. 3,
Moscow, 1961.

3
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.

s, = 1. Switching all terms except the first, from the right side to the
left, we get |
X = a2 g 20— 2 — gy = 2 = 20,

‘This makes it clear that
) T <x
or o ,
. n<loggx. : (5.3)
On the other hand, the following inequality holds:
8‘2‘ + 6‘_12'_.‘1 + 8‘_32‘_é 't cee 3121 + &g
52n+2s—1+2l—2+___+21+ 1 =2a+1_1.

From this relation and from (5.1), it follows that

‘ x s 2 ]
or '
X <2/
.whichcxmalsobewritten .
n+1>loggx. o Y (5.4)

Combining (5.3) and (5.4), we obtain the inc&;ua)ity
R . n<logax<n+1. (5.5
e inequality (5.5) can be written as

n = [loga x],

that is, n is equal to the greatest integer in log, x.* The above statement
leads us to conclude that the number of binary symbols requxrcd to
code all integers in the range 0 < x < ais

I+ [logaa]l =1 ¢ n. {5.6)

4. By the greatest integer in the number a we r}&g\th: largest integer which is
less than or equal to a. The greatest integer in ¢ 18 w.rmen {a]; for example,

f#] = 3. . \%

39



The Space of Information _ 3t

The one is included here because there are " + 1 terms inthe sequence

By Ex—19 - - -5 81, &p. }f;‘

With thc aid of the binary.alphabet %, any type of mformatxon

(numbers, commands, logical relations, and so forth) can bc written

into the memeries of computers.®

By a message in a given alphabet % we shail mean a finite sequence of
symbols from this alphabet. It is sometimes convepient to divide a
message into standard submessages, ¥hich are called words.

Generally speaking, it is possible to define infinite alphabets and
messages, but we shall not consider them here.

A message written in one alphabet can sometimes he translated into

“another. For example, as we have already seen, an intsger represented

by its decimal digits can also be written in the binary alphabet. One of

the important examples of such translation is the following: Suppose '

that we are given an alphabgt 3. We define a new alphabet @' to be the .
set of all words of lgafth less than or equal to some positive integer &
which can be for using alphabet . It is clear that every message in -
alphabet 9 can’be broken up ifito a sequence of words of length not
greater than k, which meaas that it can be recoded in the new alphabet
.

SA similar idea could be introduced for messages in the Russian
language, written in the Russian alphabet supplgmented by a space and
punctuation marks. Here it would be necessary to take a complete word
list of the Russian language and to assign to each word in it-a hieroglyph”
(using, foxxﬁzlc, a combination of Chinese and Egyptian writing).
If one could, inaddition, introduce hieroglyphs in such a way that it
would be possible to distinguish cases and conjugations of verbs, then
one could recode any message in the Russian language.

In place of hieroglyphs one might use decimal numbers of six digits.
The first five digits of such numbers would suffice for coding words;*
the sixth digit could be used for coding grammatical signs.

Here we have for thejrst time stumbled upon the important notion
of coding apd recoding messages. By codification we mean, generally
speaking, the formation in a given alphabet of messages containing
given information or the translation of a message written in one alpha-
bet into a message written in another. In this respect, “one-to-one’’
translations, that is, cases in which it is possible to transform the
information of a message from one language to another in an essentially
unique way, are of most interest. It is easy to see that the translation of

5. On this point, see Donald E. Knuth, The Art of Computer Programming,

vol. 1 (Reading, Mass.: Addison-Wesley, 1969).
6. As one could easily make do with & vocabulary of 100,000 Russian words.

41]

N
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Russian sentences from the alphabetical to the hieroglyphic form has
* this property. \

~In practice, this method of encoding messages by words is used along
with a method of decoding by mé&ans of a word alphabet.

The reverse situation also occurs, in which a symbol from-a given
alphabet 2 is coded in the form:of a word written in a simpler alphabet
o', For example, suppose an alphabet consists of three symbols {;, —, *}
(dot, dash, end of letter). Then an arbitrary letter or punctuation mark
can be written in this Morse code (see table 5.1) as a word of at most
seven symbols from the alphabet &'. s

.
1

Table 5.1 o ,

The Morse Alphabet
-

Morse Latin ‘ Morse ) Latin Let£c$
Symbols =~ Letters Symbols (and Arabic Numerals)

e ? {question mark)
______ ! (exclamation point)

—_ A - \% ;
- B -— W
—- C —s X .
— D —_——— Y
E —— Z
- | 1
- G ——— 2
“H i — 3
1 L eee— 4.
—_—— S S PO 5
— - K J 6 _
—~ . _— .. 7
T M g
- N o m———. 9 »
— 0O  ————e- 0
- = N c— , (comma)
—_ = Q RRRYY . {period)
- R — = ; (semicolon)
. S ———:-+ s I{colon)
T
9]

The marks “*" and “**" for the end of a letter and the end of a
word, respectively, are coded by intervals of time a.nd tht.rcfora,

are not included'inthe tabie. ——— - ‘""f“*'—

In this way, English words can be written in the Morse diphdbct
instead of theLatin alphabet.

N
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Example. The English sentence, * What is dxstance?” can be wntten
as follows in the Morse alphabet:

As it happens (fortunately for computer tcchnology), any message in

an arbitrary finite alphabet can be rccodcd in the binary alphabet

: = {0, 1}. ' .

‘ Any nonncgatxve integer can be represented in the form of cquatxon .

. (5.1); that is, in the binary system and, therefore, as a word in the o
binary alphabet.

If we consider only integers in some range 0 < x < g, the sequence

~of binary symbols for x ~ s.£,_;- - 560 caN have no more than
1 + [log, @] terms . 6) _ ‘ .

Now, if we have an arbitrary ﬁmtc alphabet 9 consisting of m -
symbols, we can assign to each symbol an integer between O and m — 1
inclusive. And so, to each symbol of the alphabet ¥ it is possible to
assign a binary word, corresponding, in accordanee with (5.1), to the
number associated with that symbol. Moreover, it is possible to make
do with words of length »n, where

loga(m = 1) < n < 1 + loga (m — 1). 67

£ 4

In this way it is possible in the case of any finite alphabet to limit
oneself to words in the binary alphabet. Modern telegtaphy employs an
international telegraphic code for Russian and Latin letters, numerals,
and punctuation marks. As an example, we introduce in table 5.2 the
five-symbol code used in tejegraphic apparatus of type CT-35." ~

The last five combinations are read in the same way in all registers.

The symbols of the registers indicate that after the appearance of, let
us say, the symbols of the Latin register, all binary five-symbol com- .

- binations are read as Latin letters. In order to switch to Russian letters,
one must insert the symbol for the Russian register.

Example. Let us write the following sentence in our telegraph code: .
“The name Shakespeare is written Ilexcnup in Russian.”

7. At present the so-called “intergational telegraphic code No. 2" is being used
more and more. The following codea variation of the “international telegraph al-
phabet No.1” for multiplex systems, is based on an analogous principle.

R ‘ . /

130N
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00001 10101 11010, 01000 10001 OI111 mooo<mon 01000
10001 00101 11010 10000 10011 01000 00101 11000 01000
10000 00111 01000 10001 01100 00101 10001 01101 00111
01100 10101 10101 01000 OI11} 10001 00010 01100 14111
01000 10011 00101 11000 01100 00111 10001 00001 01100
01111 10001 00111 10100 00101 00101 01100 10000 ON4I
00010" 00101 . '

. Table 5.2 -
International Telegraphic Code for Russian and
\ Latin Lesters

Latin .  Numerical Russian Code
. - Register Register Registcr‘ Combination
A 1 A « 10000
B ) 8 . B 00110
) . o B 01101
<~ 7 I‘i 01010
‘ D 0 I 11110 =,
\ E 2 E 01000 .,
¥ : X 11101
N Z : 3 11001
: . I, it )51 01100
J 6 . .1 10010 v
K { K 10011
“x L = JI 11011 ‘
- M ) M 01011 4
N 0 H , o
o 5. + 0 11100
P B 11000
“ R — P 00111
'S C 00101
T T 10101
y 4 Y 10100
F iC) <@ 01110
° H + X 11010
C .9 11 10110 , ™~
« Q / 4 1011}
X . B 01001
Y 3 bl 00100
A 00011
Russian Register 11111
Numerical Register 00010
Latin Register 00001
blank 10001
bell . 00000
&
, /,'?
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‘In the coded text the symbols for the registers are in heavy print, for
" it is necessary to notice them in order to be able to chahge from Russian
to English, to arrange the punctuation marks, and to.wpite down the'
letter “xm.” The latter is placed in the numerical register since there are
more Russian than Lat.m letters.

A five-digit binary Code suffices for the rcp
Russian) letters. Such a cede is given'in table& 3.

Tabie 5.3

a 00000 h 0011Y o 01110 u IOIODT
. b 00001 i-- 01000 p O1111 v 10101 - A
c 0000 j 01001 q 10000 w 10110 '
- d 00011 k 01010 r 10001 x 10111
¢ 00100 I 01011 s 10010 y 11000
f 00101 m 01100 . t 10011 z 11001

g 00110 n 01101

»

w

The sentence “The lcngth of the hypotenuse is less than the sum of the -
" lengths of the two.legs’’ can be coded as follows -

10011 00111 00100 11010 01011 001()0 01101 ‘00110 10011
00111 11010 01110 00101 11010 10011 00111 00100 11010

00111 11000 OI111 01110 N0OOI1 00100 01101 10100 "10010

00100 11010 01000 10010 %1010 O©1011 00100 10010 10010
11010 10011 00111 00000 Ofi01 1100 10011 00111 00100
11010 10010 10100 01100 .11010 Of110 00101 11010 10011
00111 00100 11010 01011 00100 OI101 00110 10011 QOt1l
10010 11010 01110 00101 11010 10011 OOI1l 00100 11010
10011 10116 O1110 11010 01011 00100 00110 10010

Note that the separation of the five-digit strings is used here only for
ease of reading and that the blank entry 11010 has been imtroduced
as a space symbol between words. For storage of such a message in the
, memory of a computer or for transmission by means of telegraph no
symhols but zero and one dre needed.

To illustrate this point, let us suppose that the abovc text were written
as a cohtinuous string of zeros and ones. Then the first line (excluding
space symbols) would read:’ T

108110011100100010110010001T01001101001 1

We couid initially separate the first five symbols 10011 and write
them down. Thencwe could separate the xmmcéxately followxng five'

Fy



36 The Space of Information

symbols 00111 and write them down. In this way we could generate the -
complete message by inserting spaces between strings (on the subject of
separating words in messages, see note 3 on page 29).

We shall now introduce the idea of a space of commtunication. Let us
consider an arbitrary alphabet® % and the set of messages consisting of
exactly #n symbols from the alphabet 9.

We define the distance d(£, n) between two messages £ and 7 to be thc

~number of positions. in- which the messages £ and » have different
‘symbols. The metgie space E(n, %) obtained in this way is called the

n- dlmensxonal space of communication over the a!phabet A,

Example ® 2 is the Latin alphabet, n = S, Let £ = build; » = gu:lt
All fetters but the first and fifth coincide, and so d(£, 7) = 2.

Example 2." ¥, is the binary a!r_;%;zbet n = I2§1nd£ 000110101010,
7 = 010101101011, The second, fifth, sixth, and twelfth binary digits
do not minc:de and so d(F¥ n) = 4.

Note, that it is possible to compare any words of Iength not greater
than »if it is agreed that wards of less than » letters are augmented by a
previously chosen letter until they are of length 21 (usually 0in the binary
alphaget)

Let us verify that the metnc d defmed above satxsﬁes all of the
necessary axioms. ‘
The?a)(:om of symmetry d(¢, 5y = d{n, ¢) follows from the definition,
in which the roles of £ and Mmterchangcab}e It is obvious that
d{é, ) > 0,and thatd(¢, ) = 0 only if all of the corresponding symbols
in the messages ¢ and % coincide—that is, if the words £ and » are.the

same.

The triangle inequality is verified as follows: Assume that we are
given three words £, 7, and { of length . Let us suppose that in the kth
position, the symbols of words ¢ and { coincide, as well as the symbols

" of words { and 5. Then it is clear that for this position the symbols of

words ¢ and 7 also coincide.

To be concise, let &, be the kth symbol of message £; {, the kth
symbol of message {; and 7, the kth symbol of message ». Then if
£c = . and {, = n,, €& = n. Taking the contrapositive, if £, # ny,
then either £, # {, or {i # 7.

Thus, words £ and » can have different symbols only in those positions
where either the symbols of words £ and { or those of words { and 5 do
not coincide. This indicates that the number of symbols of ¢ and 5

which ds#¥¥r does not exceed the sum of the number of noncoincident
. ) - 2 .
‘8. In this situation it is not even essential that the alphabet 2 be finite.
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“symbols of £ and { and those of { and . But the number of symbols at
which ¢ and { do not cdincide plus the number at which { and 5 do not
coincide is d(¢, {) + d({, 7). In other words, v

d(é,m) < di§, ) + d{l, ), (5.8),

the triangle inequality.

Example. In the space E(5, %), where 9 is the Latin alphabet, let
§ = trace, 9 = truce, and { = trunk. Clearly, d(£,7) =~ 1, d{¢, {) = 3,
“and d({, 5) = 2; and so :

d(,m) < d(, D) + dit, 7).

With the aid of this metric, it is possible to formulate a general
principle for the construction of codes which allows us to correct
mistakes automatically. This principle was first introduced by P.
Hemming.® We shall examine it in the following chapter.

9. See the article by' P. Hemming in the collected translations Kedy s obng-
ruzheniem i Ispravleniem oshibok (Codes and the Detection and Correction of -
Errors), 1L, Moscow, 1956, : '

-
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In this chapter we shall examine the space of communication E(n, ¥);
that js, the space of messages of length n formed in the alphabet %. As
we have aiready scen, it is possible to limit oneself exclusively to binary
messages (messages in the alphabet 95). All of our interesting examples -
will come from this alphabet. | - L

Let us consider the following general scheme for the transmission of
information (fig. 6.1). Messages emanating from some source are

 recoded into an error-stabilizing code by means of a coding device.
. Then these messages are transmitted along connecting lines, during
which time the messages might become distorted. Finally, the messages
are corrected at the receivingend by a decoging device and decoded into
the initial code if necessary. -

-

Dictionary

Sdurce of Coding | [Connectng
information| | device

?. ‘% / Fig. e.x‘

The automatic detection and correction of errors during the storage
of information in machine memory occurs in a completely analogous
manner. '

' As information is stored in the memory, it is transiated into an error-
— ... ._stabilizing code. When the message is read, the corresponding decoding
' takes place, along with the correction of errors admitted during storage.
By periodically reading, decoding% gorrecting, rccoding: and storing

38, .
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Sourcs of
information
Symbaols | . Cadmé {input)
" device -
Memoryl - 4 o -
information -
Read-out ;
- Decoding | (output)
. device ]
e}
Fig. 6.2

information, we can be sure of its accuracy. In particular, if we choose
a ptnod of time T during which not too many distortions of the stored
infoPmation can arise, and repeat the above process no less frequently:
than-once per period 7T of time, the accuracy of the stored information
will be guaranteed. In other words,. T must be¢hosen so small that the
~ distance d(¢, ¢') between the stored message £ and the message ¢ that
is read cannot become too\great. s

We now chgaese a subset N, of E(n, %) with the property that for any
two distinct elements & and 75 of N,

-

l/ - d§&,n) 2 k. (6D

We shall call the set N, the set'af intelligible words. Let us suppose.
that during the transmission and storage of the intelligible word £ € N,
[ errors (thh < k- 1) are’admitted—that is, / symbols of the word
¢ are incorrectly given. This incorrectly transmitted word we shall
denote as £'. By the definition of our metric, d(¢, ') = I. Clearly, the
word ¢’ is not intelligible, for if it were, d(¢, ¢') wouid be greater than
i—by (6.1).

Thus, we may check the transmitted word ¢ and see that it is not
intelligible (it can, for example, be cdmparcd with all the words of ¥N,—
in figures 6.1 and 6.2 this possibility is guaranteed by the availability of
a dictionary). We would then discover that an error had been made.
While the word is in the machine memory, such a process of checking
can take place periodically, where we choose the period T to satisfy the
condition that during the time 7 there is little chance for more than
k — 1 errors to arise in a single-word. Thus, we already have a general
principle for the detection of errors.

O emLe .
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But we can do even more; we can actually correct the mistakes that
arise. For this purpose.we shall assume that the number of mistakes
! < (k — 1)]2. Let 7 be an arbitrary intelligible word cjxstmct from &,
and £ as before, an incorrectly transmitted word.

Applymg the trxangle mequahty,

*
‘ d(¢,m) < d(& &) + d(f', v})
Setting d(¢, €') = /, and using (6.1),
| | ks1+dEn).
Fr‘om this it is clear that
-d(f’,n)ak—l?_kik—1=k+l’ (_5.2)»

2 2

since I < (k — 1)/2. S
From the assumption that / < (k — 1)/2 and frony (6.2), we conclude

that the incorrect word ¢’ is at most (k — 1)/2 away fromi the correct

word ¢ and at least as far as (k + 1)/2 from any other intell :ngle word
7. In other words, we find that the mteihgxble word £ is nearest to &,
and thus establish the correct message.

The above discussion seems to suggest the usefulness of determining
~ the Dirichlet region of each intelligible word. For each word £’ to be
corrected, it must be determined to which Dirichlet region the message
belongs. The intelligible word determining this Dirichlet region is
considered the correct word.

Here is where Hemming's remarkable idea comes in. This idea is
based on the fact that for the purposes of transmission, one need not
use all possible combingtions of symbols from the alphabet, but only
some set of intelligible words. Since in English only certain combinations
of letters are used as intelligible words, the sense of distorted words can
frequently be established without the usc of additional codings. This has
already been illustrated.

We shall nowesxamine the means by which error-stabilizing codes are
copstructed in practice; in particular, the construction of sets of
intelligible words N, < E(n, %), All of our examples will come from
the binary alphabet 2,. As we have already seen, such a condition is not
a limitation, for it}is possible to write any message in the binary
alphabet.

/‘\
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The problem of error-stabilizing codification can be formulated in-

the following way. Suppose that we have the space of s-symbol bihary
"~ messages £(s, ;). We must place in correspondence with each such
- message a message fromsome set N, < E(n, A,). This set of intelligible

words N, must be stable-with respect to I-piaee errors. Wc shall call the
"quantity (n — s)/n the redundancy of the code.

Since the exact formulation of this pmblem must involve the probable
distortion occurrin® during transmission, it is necessary to construct the
code (the set N, < E(n, %)) in such a way that the probability of -
receiving more than / errors in a word of length » is sufficiently small.
This more complete formulation of the problem is studied in mforma-
tion theory, but it need not concern us here,

In the construction of these codes it is especially convenient to
introduce and apply the concept of addition modulo 2; that is, according

* to the rules

0®l=1, 1®t=0.

~
# The circled plus sign indicates that the operation carried out is not

. ordinary addition. The djgtance between two binary words § =
X1Xg'i-Xpand n = y;yg- -+ y, (Where all x;and y, have the value Qor 1)
can now be written in the following way:

dg, ) = (0 @y) + G2 @ya) +oF (K D).

Since ones will appear as terms_in this sum when and only when
corresponding symbols differ, the/otal will be exactly equal to the
defined distance d(¢, 7). «

Let us consider the space of messages E(n, %) and associate with
each word ¢ € E(s, ¥,).a word ¢ of length s + 1, formed according to
the following rule: The first s symbols of the word £ will be the same as
those of the word §. The last ((s + 1)) symbol of the word £’ is chosen
in such a way'as to make the sum (urdmary) of binary symbols in thes
word ¢ even. In other words if £ = x;X3° * XeXg4 1

.

x1®x20"'oxsox8+) =0. : (63)

This equality (and some easily verified properties of addition modulo 2)
allow us to express x;,, expiicitly:

xs+1 = X (DXQ @ Xg » , (6.4)
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For example, if ¢ = 001011101, then ¢ = 0010111011.

The words ¢’ formed in this way define the set of mtelhgxble ‘words
N; € E(s + 1, %).

It is clear that the d:stance between two distinct jntelligible words ¢’
and £ must %even, for if & differed from £” in an®odd number of
positions, then the sum of the units in one of the words ¢’ or £" would be¢
odd, a situation made impossible by the construction of these words.
And because the smallest even number not equal to zero is two, the
minimum distance between distinct mtelhgnble words is two; thus the
subscript 2 is used.

Consequently, this code allows us to detect errors of one digit by
counting the nonzero digits ; if the evenness criterion :§ .3) is not satisfied,

-

then the word contains an error. This error detection) process is widely
known as the evenness test and is very frequently applied because of its
simplicity. The redundancy of the error detection code is

s+ —-s 71
s+1 s+1

We shall now consider a beautiful example of a code (due to

 Hemming) which is capable of correcting single-digit errors.

Let ¢ € B(s, %) be a binary word of length s. We form the word
¢' e E(n, ¥;) according to the following rule: Among the n positions in
the word ¢', we choose the first, the second, the fourth, .. ., the (2¥)th

. positions for controlling symbols which are determined by the word §£. -

Between these positions are the significant positions. In the example

¢ = 1001110010011011111101100010010, ' .

we have indicated the mutual distribution 'of the controlling (dis-
tinguished by heavy type) ‘and the significant positions for the case
s = 26, n-= 31, k = 4. In order to make s significant positions avail-
able, the number of controlling positions (k + 1) plus the number &bf
significant posjtior1s must lie between the Ath and (& + 1)®* powers of
2; that is, it is necessary and suffigient that -

< s+ k+ 1 <280, (6.5)

The redundancy of the givencode is (s + Kk + 1) — sl/s + k + 1 =
k+Djs+k+ 1 '

The (i + 1)™ controlling position (position 2') is filled according to
the following rule: Each position of the word £’ is defined by a number

£ - _

1

s

e
¢
v
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I, counting from, the b&ginning of the word. We cxamme the binary
representation of this number: :

I =12%+ 0 _ 2V 4.+ 2+ I,

—the number of binary elements in the representation of the number /
is defined so that, in accotdance with (].5), [ < 2¥#1, =~

Let us now consider the set =, of all those positions / for which /; = 1.
This set contains exactly one ccntroﬁling position, the position with the
number / = 2f. We fill n in such a way that the sum of all the
'voncs in the positions of =; will be even.

- In table 6.1 we give an example of a word §’, which can bc read ~

vertically in the second column. We have shown the binary number of
the positions and marked wi\q; a star those positions belonging to the
set 7, Words ¢’ constructed according to this rule shall be called
intelligible.

We shall show that the distance between any two intelligible words
& and 7" is not less than 3—that is, that the mteihgxble words form a set
NS Es+k+ 1,4y

Case 1. Suppose words § and 7 from E(.s, 912) differ in at least three .
positions. Clearly, then, the words ¢’ and v’ likewise differ in at least
three positions and, consequently, d(¢', 7') > 3.

Case 2. Lét the words £ and 7 differ in two positions. Then the words
¢ and ' differ in two significant positions—say positions /,and /'
Since / # I, the binary representation of / differs from th& of 7’ in at
least one place. Let / be the place in which the two representations differ
and, without loss of generality, say 4 = 1 and /| = 0. Then /€ =, but
I ¢,fo‘ :

 Because the words ¢’ and' %’ differ in only two significant positions,
and since !’ ¢ m, the sum of the significant digits in =, for the word £
and the sum of digits in the corresponding set for ' must differ. As the
sum of the digits in the set of positions =, must be madeeven both for
¢ and for 7', the words ¢’ and »’ must differ again in the controlling
position of the set =, (in position 2!). Thus, ¢ and nsdiffer in at least
three positions, and d(§',7") > 3. ! ‘

‘Case 3. let the words £ and 7 differ in exactly one position. Then’
the words ¢ and »’ differ in exactly one significant position with the

number /. This number cannot be a power of two, since numbers of the*

- 4form 2' are used for the controlling positions. Therefore, the number /
has at least two nonzero binary digits [, = 1 and /; = 1. Consequently,

position / is in both =, and ;. Since the sum of the digits in these sets

must be made even for both ¢ and 7', " and " must differ in controlling
positions 2! and 2/,

a

1
L
3
H

o

oy



;in

\ 10110
, 10111

' comparative ease, for to restore a word i
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R . Table 6.1

Position Contents of
No. the Position = %1 w0 w2 74

00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100,

. 01101
01110
01111
10000
10001
10010
10011
10100
10101

s & & &

‘* n e &

11000
11001
11010
11011
11100
11101
11110
11111

® B # 0 8 8 & H 8 8 8 8 8 e s

»
” & @ »

O O O RN O OOt O m @ O OO DO - OO -

e & » & 4 & & »

In each case, then, the words £ and »' differ in at least three positions,
and d(¢',7) = 3.

And so the set of intelligible messages is an N; set; consequently, one
can in B?mcxple restore distorted messages even if the error occurs only
in a single digit.

In the binary case, this process of restora can be carried out with

r{mgc binary alphabet, it is
sufficient to determine the number of the position in which the error
has occurred and to change the entry in this posmon from 0 to I or
vice versa. .

.

53
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In the code that we are examining, the number of the position with an
incorrect entry can be ascertained by the following method: After the
transmission of the message §', during which only one digit can be
distorted (resulting in the message %), we check whether the sum of the
digits is even or odd for each set of positions = In other words, we
calculate the controlhng quantities .. '

o= {3 @ & @E"@

where o, is equal to the sum modulo 2 of all the symbols in the posmons
of the set o, of the received message £*.

If all of the & = 0, then £* is an intelligible message. I, howevgr, ‘

some o; = 1, then an error must exist in a position / belonging to the set
.m, that is, in a position where the /th binary digit is equal to 1. Con-
“versely, for each o, = 0, no error occurs in any position belonging to
the set =, (since two errors that cancel each other out are extremely
improbable). : '

Thus, the controlling quantities o are just the binary dig(i)t;‘ién/tfhe
expansion of the number of the posmon in which the error has rred;
that is, :

= a2 b 25 b2 4 . (6.6)

So the ‘controﬂing quantities of the received message ‘completely
determine / and enable us to restore the correct message §'.

Let us take, for example, the word £’ written in table 6 and distort it
~ in the nineteenth position.

We obtain the word
. . ¢* = 1001110010011011010101100010010 ;
carrying out our test, we find

'ai:l», ‘7‘3:0: “2205 o =1, a{):‘xi

that is, / = 10011, the binary representation of the decimal number 19.

Changing O to 1 in the nineteenth position of the word £*, we obtain |

"¢', the word that we started with.

1. That is, if an error exists, it is an error of at least three positions, a situation
made impossible by the fact that the transmission time is so short that it is highly
improbable for more than one error to occur.
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A simpler code allowing us to correct single mistakes would resuit if
thé'word ¢’ were given by a triple repetition of the word ¢ € E(s, 9(2)

“ Then if £ and  differ in r positions, the corresponding words £ and 17

would differ in 3r positions. Thus, d(¢', 1) = 3, provided that ¢ # 7.

- The transmitted word is checked in the followmg manner.

A triple of positions with the numbers /, [ + s, I + 2s, where 1 <

I<s, 45 considered. If the symbols in these positions coincide, the

corresponding symbol is considered to have been given correctly. Since
the binary language contains only two letters, the symbols in two of
these three positions must coincide; and so, if only two of these symbols
coincide, their.common meaning is considered to be the correct one
and is entered in the third position.

Thus, this code is capable of correcting single errors in each triple of
correspongding posmons The weakness of the code is its high re-
dundancy, which is (3s — §)/3s = 2s/3s ="2/3. The redundancy of the
former code is

k+1 . [logs(s+ k + 1)]+1
s+k+1 o s+ k+1

[ .
where the square brackets denote the greatest integer function (since
% g5 + k + 1 < 2%*1); sctting the length of the word (s + & + 1)
equal to n; the redundancy becomes {[logz n] + 1}/n, which, for large n.
(long words) is practically zero.

Codes that allow the correction of errors in the transmxssxon angd -
storage of information are very impgftant in various automatic control
devices. The last twenty years havg seen the appearance of a great
number of works concerning error-Stabilizing codes that allow us to *
correct multiple as well as single errors.
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In this chapter we examine an n-dimensional vectag‘space R® and
various distance functions which determine metric spa ¢ vector
space R® serves as a generalization of the concepts of Ime (RY), plane
(R?), and three-space (R®) considered in elementary geometry. We can
arrive at a reasonable definition of the n-dimensional space R* (rz-space)
in the following manner.

We consider the plane with some system of Cartesian coordinates.’
Each point M on the plane is uniquely defined by a pair of coordinates

" (x, y), whefe x € R, y € R (here R denotes the set of real numbers).

To each point M there corresponds in a onesto-one manner a vector
joining the origin of the coordinate system to that point (see fig. 7.1).
Thus, there exists a one-to-one correspondencc between any two of the
following objects:

° _ ' - The point M «> the vector OM < the
Y4 ~ pair of coordinates (x,y). Conse-
quently, we may think of the plane,
Mixy) interchangeably as a set of points, a set
of vectors, or a set of ordered pairs
(x, y) of real numbers. Analogously, we
*can consider three-space as a set of
ordered triples (x, y, z) of real numbers.
Fig. 7.1 Qur desired definition’ (of n-space)
suggests itself.

By a vector in n-space (R*) we mean an ordered n-tuple of reai

numbers * ' '

¢

. &= ('x,, Xzy ooy Xp) -

47
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The numbers x;, X3, . . ., x, are called the coordinates of the vector £
The set of all such vectors is the n-dimensional vector space R*.
Clearly, the vector space R? is ordinary three-space; the vector space
R? is the plane; and the space R! is the straight line.
Three operations are defined on vectors in R": addition, subtraction,
and multiplication by a scalar (real number). These operations are

© = défined as follows. . |
v« The sum of the vectors £ = (xy, Xx3,..., x,) and 5 = (Y1 Yas- - ¥n)
is the vector . e L
Y C=8+n=(+yu,%+ . X ¥ Vo),
the coordinates of which are the sums of the corresponding coordinates .
of £ and . - ‘ ' '

Analogously, the différence of these same vectors ¢ and 7 is the vector

9=f—n=(-’C1—}’1,-’-’a—)’2,--'-,xn—‘}’u),

-whose coordinates are the differences of the corresponding coordinates.
* The product of the scalar 4 and the vector ¢ = (x,, x3, . ++s Xp) 1s the
vector .

» q:=a§«aa.x1,axg,...,ax,‘).

In other‘words, to multiply a vector by a scalar, we multiply each of
the coordinates by the scalar. On the plane and in three-space these
operations have natural, geometrical interpretations. For the sake of
clarity we shall examine two vectors, £ and 7, in the plane (fig. 7.2).
From the diagram it is clear tt%the sum { = ¢ + 7 is the vector
formed by the diagonal of the paralelogram determined by t&e vectors
¢ and n. This property of vector addition is useful in phy$cal con-
siderations involving sums of vector quantities such as forces and

momenta,
g
. Y4 &
3 .
f . . i
¥y
< } Yit- *
y. l . I i
‘ ! 9 ¥l g j
‘ |
{
Vi ! Y9 :
] ]
g i
0 Xy Xz o B I
Fig. 7.3
v r~
2/

.
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" The difference of the vectors £ and » (fig. 7.3) is the vector directed
from the end of the vector 5 to the end of the vector £.

The product of the positive number a and the vector £ is a vector
having the same direction as £, but of length a times the length of §.
{Clearly, when a <1, the length 'of the vector af is less than that of the

vector £.) To multiply the vector ¢ by the negative number 4, one must

multiply it by |a} and then take the vector with the same length but

" opposite direction. All of these cases are pictured in figure 7.4.

ax

‘O\ ‘ ax

—— —{ay

Fig. 7.4

¥ne can easily verify that the operations on n-dimensional vectors
defined above satisfy the following properties, which are anhalogous to
the properties of the corresponding operations defined on the real
numbers. H?re £, neR" and @, be R. The symbol 0 is used to denote
both the real number zero and the zero vector (0,0, . . ., 0)e R™. When
0is written as the sum or difference of vectors, the zero vector is denoted.
All scalars are written to the left of vectors in a scalar multiplication.
. £ + n = 7 + £ (commutativity), '
2. £+ (g + O = (§ + m) + £ (additive associativity),
3.6—£=0, /
4, 0 + ¢ = £ where 0e R,
5. a(¢ + 1) = a + an (distributivity of scalar multiplication over
vector addition),
(@ + b)¢ = aé + bé (distributivity of scalar multiplication over
scalar addition),

~

a

}
[

7. a(bS=Mib)¢ (multiplicative associativity),
8. 0-£ =0, where 0 e R, ’

9. g-0 = 0, where 0e R",

10. 1- £ = ¢

i
R
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Clearly, two vectors, ¢ and 7, a qual if and only if § .y = 0.

Let us coggider some other cxakaples of multidimensional spaces
that arise na§rally in geometry. ’

Example 1. The set .of all spheres in three-space. Each sphere is
uniquely determmgd by.gn ordered 4-tuple (x ¥ z, R), where (x, y, z)
is the center and R the radius. ~

Example 2. The set of all trrﬁ)gles in three-space. Each triangle is
uniquely determined by an orderéd 9 tuple (x;, y1, 21, X3, Y2, 22, X3, V3, Z3);
where the triple (x;, y,, z,) gives the coordinates of the ith vertex of the

triangle (/ = 1, 2, or 3). We suggest that the reader convince himself that .

A

in both of these examples multiplication of all of the coordinates (that

is, of the corresponding four- or nine-dimensional vector) by the real
number q is equivalent to performing a similarity transformation with
the center of similarity at the origin. We further suggest that the reader

make a_more detailed study of varxous possxble metrics m the spaces of

spheres and triangles.

Let us now examine various metrics whxch we can define on R" to
form a metric space.

The metrxc d; (determining the metnc space /;™) is defined by .

A&, m) = VO =3l + a =y + o (= (L)
where A .

- . fzcxuxm---:xn) and ’)=()’1,)’2:"':}’n)-

In three-space and in the plane, the metric d, is just the ordinary
geometric distance function. Properties 1, 2, and 3 are obvious for this

metric. ot
The space /,'™ is defined by the metric d, where »

dilé,m) = |x; =yl + {xx — ya|F e+ |xy = Yl (7-2)‘

In the plane (the space /;® defined by the set R? and the metric &,) this

»

metric coincides with the metric d,. defmcd in chapter 4. Again, pgpper-

ties T,") and 3 are obvious.
The space C™ results if we define a metric d,, according to the rule

do(€;m) — max ([xi - 3l Jxa - el I3 - 36Dy (7.3)

that i is, do(£, n) is the maximal devidtion of corresponding coordinates.
Properties 1, 2, and 3 are obviously satisficd by this metric afso. For the
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: plane R? it coincides with the metric d,, introduced in chapter 4.
Let us prove the triangle inequality for the space /|'™.
I.ct : : 4 3 .

§=(xuXa . nX);  A=0nrn-.ud); L=Gnzm..., 2
Then, obviously, o
dx(f’ 7 = |x - il + fxa —yal +oF |xe = wl

=l xi—zi+z Rl +xa—zm+z—p| +o-

~
+ [xn ~ 2 + Za = V4 ‘
< lxl _ z;[ + ‘21 .}’1‘ + !xg — 221 + lZQ yQJ e
- + txn - zal + ;zn ynt

-‘_-" dx(f:'-z) + dl(;’ 7)) ’ C

and the triangle inequality holds.
For the space C™ with the metric d, the triangle mequamty is proved
as follows. Let |x, — y,‘} be the largest of the differences of correspond-

itig coordinates; that i is,

¢

m(f; 77) = max (ixl - })1[: lx2 - yﬂt,_- .y ixn - yn!)

) : = |x¢ = Yl = % ~ 2 + zkl"\)’ﬂ\ o~
i\\} S !xk b zk; + tzk - y;‘% . [8 . .- (7'4)
It is obvious tha; _ .

o= ad s max(x = 2l % =zl e > zl) = dald 5),}

lfk - ykt < max (!Z; -~ .yl!: !zﬂ - y?}s revy kzn - yr:}) = daﬂ(gs "I)
- (7.5°

. Combining (7.4) and (7.5), we get the desired relation
dm(ég 7)) < dm(‘f, 0 + a:f{’ 7)) .

' .y ' ' . b . Lo . . .
A general class of metric spaces over R" is obtained if we introduce a
metric d;, defined by the formula

xw(f, n) = \[(xx —y )P+ (g — ya)f + + (X2 = yu)¥,
‘where p = 1; the“space obtained in this wgy is called /,™. .

\Propemes I, 2, and 3 tan be verified in this case exactly as before.
The triangle mequahty is defived from® Minkowski’s mequahty (see the

footnote on page 21); . o . .
K V(a, — b)Y + (32 — ba)® + + (an - bn)ﬂ ‘3
¢ ; *«7
A S ValP +af +- o+ ay> + \/fbi + bs° + + b,* .
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It is not difficult to see that for p = 1 and p = 2 the spaces ;'™ and
;vd above are obtained. As p — co the metric d, approaches the
metric d,; that is, [, = C™. The reader can easily verify this by
generalizing the analogous argument in chapter 4.

A more difficult exercise is to show that the sphére of radius r in the

space [ is an octahedron (fig. 7 5) whereas in the space C® it is a cube,

(ﬁg 7.6). <
. z ” A: y
. 1 -
" 1if
y ‘\ .
f i -
r . ) / ff —~ .. % - ‘//‘
s Lr h
. - ¢ x A S -/'
A -
'\\ £
~ /
Va
N 7
‘ Vs
Fig. 7.5 ' Fig. 7.6

. The spaces [, over R", like the corresponding spaces I, in thc\\plane

(R?), are called Mmkowskl spaces. These spaces can be generalized very

.naturally to an infinite-dimensional vector space whose elements are
- vectors With an infinite number of coordinates. '

A more general class of metrics on R™ can be defmed with the

introduction of the concept of convex body. |
: Let us introduc® samgeal new defini-
tions. We shall interpret a vector ¢ in R”

nal point of that vectof when the
~initial point is placed at’the origin. We
say that a subset V of R™ is convex if for
each pair of vectors § € Vand e V, all
vectors of the form af + (1 — a)y,
where a is an arbitrary number betw%n
' = zero and one (0 < a < 1), are. con-
Fig. 7.7 -« " tained in ¥, Geometrically (in R? and
. ' R®), this meang that the entire line
segment joining any two points.of ¥ 1% contaied i V.
A subset ¥V « R is bounded if there c§r§ts a p(mtwe number K sugh
thdt forany ¢ = (xz, Xa, ..  Xn) €V, .

|x1] < K; |xg] < K Ex"i,f K..

as the point correspond/p to the ..
\‘termx

~
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-

Figure 7,7 pictures a convex but unbounded subset of R?; the subset
pictured in figure 7.8 1s both con\’ex and bounded.

A vector £ belonging to a subset ¥ of R" is said to be an interior
point of V if for each vector 5 € R", there exists a positive number a such
that £ + an e V. 1rt other words, if we move in an arbitrary direction
from the end of the vector £, then we remain for some time in the set ¥.

If V is a flat surface in R®, then ¥ hds no interior points. In fact (sec
fig. 7.9, if £ € ¥ and the vector 9 is perpendicular to the plane in which
¥ lies, then for any positive a the vector § + an lies outside this plane

."and, in particula:,-‘.éu_tside;the set V.o

' called a corivex body

- A subset ¥ of R" is said ;Qrbe_\_full-dimensional if ¥ has an interior
points A convex, bounded, fu}l—éﬁmmions-l subset ¥ of R* will be

L]

‘”

>

" Fig. 7.8 Fig. 7.9

Let us now consider a convex body V symmetric with respect to the.

origin (that is, if £€ ¥, then —§¢ V) in which the origin is an interiot
point. . o .

This convex body can be used to define a metric dy on R". Suppose
£eR™ neRY let { =¢ — . Since the origin (0, 0,...,0) is an
interior point of ¥, there exists a positive number @ for whichale V. It
is casy to show that since V' is bounded, there is an upper bound to
{alalc ¥V} In oty words, there is a lower bound to {l/a | al e V}.

" At this point, we introduce the concept of greatest lower bound. 1f
A < R is bounded below, fhen the greatest lower bound of A4 (written

-inf a) is the uniqug number & for which the following conditions are

acd
satisfied;?

1. We Jeave it to the reader to show that a convex body must have -infinitely
many interior poirnts, - . :

2. The question of the unigueness and existence of the greatest lower bound is

involved and need not concern us here. For a full discussion, see Walter Rudin,
Principles of Mathematical Amalysis (New York: McGraw-Hill, 1964).

[
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-1.XfacA,thenb < a; , |
2. If ¢ is a lower bound for A, then

We are now in a position to define
Idwer bound of {l/a } a > 0,al¢

. b. [y L :
distance dy(£, 7) as the greatest
recall that { = £ — 4), that is,

,év L "d?(e’ alev 4

For { = 0, that is, when the vectors ¢ and » are equal, any g is admitted
(as we apvays have al = O e ), and the greatest lower bound in (7.6)

. is zero. When £ and 7 do not coincide, the vector { # 0 and the per-

missible values of @ are bounded from above by some positive number
A. Therefore, the values of 1/a are bounded below by 1/4, so di{(¢, n) =
jcr:i; 1/2 > 0. In other words, if £ # n, dy(¢, %) 'i; strictly greater than
‘zerQ. . LT > : :
Because- the convex body ¥ is symmetric ‘with respect to the origin,
aleV if and only if —al ="a(—{e V. Sifice —¢ ='n — £ the
symmetry~gf the metric is shown; that is, ) -

) e =dvn, 8.

‘l‘hus,’lprope'rties 1, 2;'and 3 (page'lz) hold for the metric d;. Only the
triangle inequality remains to be shown. A

£y
Y

‘Let £, 5, and { be vectors i R*. We choose fwo positive'numberé a

and b such that a(§ - {) € V'and &({ — 7) € V. Let-us denote by a the
¢ ‘ .

values of e and | — «and using the propérties of operat
we get. ! ST

s hwvectors,

/ - .

. ; A )
R AT R R
ab ., -, o ab .
=a+é[f—§f5—'7}]=a+b(§*’))=c(§'~‘fi), (7.8)
where ¢ abj(a + b). g N ) ) ST

¢
-,
i

=infi. .6

°

quantity e ? .
0 b
. “= .I. + .I_E a +b C N

a b /’“
{ A Y

Clearly,0 < @ < 1and I ~ « = a/(a™+ &). Because ¥ is convex, the

- vector ' . /o ) L
) : 0 = ofa(¢ — ,;)]//_; (I —a)b§ — )] (17

is also contained in V. Transforring expression (1.7 byg stituting the
1oh

-
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Smcc the vectore = c(f — n)e V, the number
-~'——"—+1 B
v c= @ bTa | ‘

must be at least as great as the dxstance dy(f 7) (by the dcﬁmhon of
dy(§, ) as - mf 1 /a)

I ' A -

. dv(g,q)'sé-rsf ' a9 .

However, by the definition of the numbers a and b, the quantities 1/a

. and /b can be made arbitrarily close to the distances dy(¢,{) and .

- d(L, ), respectlvely, since dy(¢, {) is the greatest lower bound of the
l/a and dy({, n) is the greatest lower bound of the 1/b. And since the

" inequality is preserved i in the limiting process, (7 9) yields thc desired .

mequahty
dy(¢, m) < dylé, D + di(d, n)! o @. 10) '
It is possible to dcvelop the definition of the metric dy in several other
ways. -

© The norm of the vector ¢ is the quantxty

1

lély = (&, 0) = inf - .11

It isgjear that the dxstance dy(¢, ) defined dbOVC is Just the norm of
the d' rence of the vectors ¢ and 7, that is,

‘€ m) = € — 9y | (112)

It can be shown (and we leave the proof to the reader) that this norm
satisfies the following properties for { € R", n € R, a ¢ R1.

LoJély = 6
2. 1€y = 0if and only if £ = 0;
3. laélly = la] |£]v;, "

4. 1€ +nlv < [€ly + lalv.
Itvxs possible to arrive at the congcept of rorm by a more abstract

.| route. We define a norm on the n-dimensiorfal vector space R* as a

>
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functipn U: R* — R (where ||£} denotes U(f)) defined for each { € R"
in such a way that the following properties are satlsﬁﬁd (herc EeR,
7 e R aeRuL _ .
1. €)= 0;
= Qif and only if £ = 0;
3. |aéll = lal [£]5

4. 1€ + ) < €] + Il

The vector space R* with a norm defined on it is called an n-dimen-
sional Minkowski space.® It can be shown that every norm can be

" defined by some symmetric convex body ¥. To verify this assertion, we

consider the §8t ¥ consisting of all vectors ¢ for which [|£] < 1. We
shall first show that ¥ is a symmetric convex body in R™

To show that V is convex, let fe ¥V andneV,andlet0 a2 < 1.
Then, by properties 3 and 4 of norfns,

1
t

la + (1 —ap| < Hafﬂ + (1 - a)nil = al¢l + (1 — a)n} -

‘Since nfﬁ < land ] < 1, we have

-

lla£+(1 ~a)ntl <a+(l~a=

that is, the vector a§ + (1 - a)y also belongs to thc set V; thus, Vi is
‘convex.

Second, we must show that the ongm is an interior point of the set V.
If £ is an arbitrary nonzero vector, we obtam upon setting a\= 1€l
that : .

Jag] = alé] -—-ﬁnfn=z; T

that is; aé € V. If £ = 0, then for any positive real number aq, afcV,

since by property 2, laél = [0 =0 < 1. *
The synmymetry of the’ set V follows from property 3 if é eV, |- 51{
CQ-DEN = | —1]1€l = €] < 1. Soif fe ¥, then —{e V.

The proof of the boundedpess of the set V' is somewhat more cumber-
some, and so we shall omit it. ' -

‘ Since the set ¥ is a convex body, it deﬁnes a norm n, denoted by
n(¢) = [[&]y. 1t 4till remains to be shown that this norm coincides with
the one chesen at the beginning of the proof. Let ¢ be an arbnrary

positive nymber for which a¢ € V. This means ahat laél| = 1, which
3. In honor of the great mathematician H Minkowski, on¢ of the creators of
the theory of relativity. ¥
> ‘.‘

20
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implies that a|¢] < 1, or 1/a = |¢]. Soif af e ¥, 1/a = €], and the
least such 1/a is obtained by setting 1/a strictly equal to ||¢]]; that is, by
. setting @ = 1/]|¢[}. In other words, the greatest lower bound of the 1/a

is | fﬁ or

3&55 = ¢ - (7.13)

S

o Comparing equations (7.13) and (7.i1), we see that

o o e =l (14
the desired result.
In R3, the norm defined by a ngen convex body ¥V has a sxmpie
physical interpretation. - .-
. - Let us suppose that we have some amsotropxc device which propa-
' gates sound waves at various speeds in different directions, and con-
" sider the case in which the speed of sound in ppposite directions is the, -
same.
We now choose a unit of speed (such as miles per hour) and construct
" in each direction from the ongm a vector whose length j Is equal to the
speed of sound in that direction. We make the further assumption that
the terminal points of these vectors bound a convex body V. Clearly, V
is bounded, symmetric with respect to the origin, and contains at least
/ one interior point, the origin.'So there is a norm |£], and a metric d,
defined by iy

3

A, m) = 1€ < uly

/\ | \’Ye feave it to the reader to verify that the distance d,(¢, ;) is numeri-
- cally equal to the time required for a sound wave to travel from the
end of the vector ¢ to the end of the vector n along the straight line
conntcting them.

In addition to the finite-dimensional Minkowski spaces one can
consider their infinite-dimensional analogs—the so-called Banach
spaces.* In general, a Banach space is a vector space on which a norm

+  can be defined (that is, a space satisfying all of the properties listed on
page 49 along with a norm possessmg all of the properties listed on
pagc 5€) .

* 4, In honor of th&Pohsh mathematicidn S, Banach (1892-19435), one of the
founders of functional analysxs -—an impo#tant brinch of modern mathematics.

56
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We'can construct ar example of an infinite-dimensional Banach space
*in the following way: Let C({0, 1]) be the set of all continuous functions -
on the closed interval [0,1] = {f | 0 < ¢ < 1}. The sum of two such
vectors (in this case, functions) is defined by its operation on a number ¢;
that is, f + gis defined by (f + g)(1) = f(t) + g(¢) for fand g elements
of C([0, 1]). Similarly, the scalar product af (for a € R) is defined by

{(af)(#) = a[f(1)]. The zero vector is the function O defined by (t) = 0,
«——— all re[0#1]. As the norm of a function we take the maximum of the
absolute values of elements of the range, that is, "

111 = max 110

v

(It can be shown that because of the chéice of the domain [0, 1], such a
maximum necessarily exists.)
o It is easy to show that all of the previously hsted vector space and
, . norm properties are satisfied by the space C([0, 1]) with the norm
- defined above.
Banach spaces in which the vectors are functxons play an 1mportant
_role in modern mathematics. .
The claim that metric spaces whose points are functions are mﬁmtc-
_dimensional can m some sense be justified by the following reasoning. .
We partition the closed interval

//f(t)// T [0, 1] by.drawing vertical lines

- ~ through n of its points (fig. 7.10).
x¢ Now we take the vector ¢ =
: (X1, %a,. . ., X,) € R* and represent
its coordinates on these vertical
- lines. The points in the plane
0 R 1 determined in this way form the
. < fy 130 13 ta "ty 1 graph of some function defined on
R ' Fig. 7.10 the n chosen points. Clearly, as
_, ' . n —» oo, this set of points “con-
v verges” to thc graph of’contmuous function if we have chosen points in
P! . ¥ whose coordinates on adjacent vestical lines become arbitrarily
close as n —» 0. If we define ¢ norm on'R" by ' i

. B . ) !

Hfﬂ = max (!xkl’ ixZL RS !xnl) ’

(where € = (xy, Xa, - . ., Xn)F R™), then this norm-*in the limit" (as
n-> oo) becomes the norm deﬁned by ™

»
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Ut =g A0,

‘where fe C([0, 1]).

The point is that n, the dimension of the normed space in question,
increases without bound, indicating that the “limiting”’ space C([O 1D
is infinite-dimensional.

-

Iy
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8 - The Smoothing
o of Errots in
| Experimental
Measurements

In the measurement of physical quantities, éxperimental results often
appear as a sequence (xy, Xa,. . ., X,) of observed values.

The quantity 1tself can be constant or variable. In the latter case, the
values x,, Xz, . : ., X should vary according to some law; in the former
case, they should be nearly equal. But in any case, the measured quan-
tities Xy, Xa,. .., X, are subject to error. In other words, there are
inhérent -experimental tmperfecnons that hinder the regeption of .
information from nature.

The mathematical problem concerned with the treatment of measure-
ments is that of the establishment (so far as possible) of the correct
information. The solutior"§%s-in the application of concepts developed -
Ipmvmusly for the automatic o;rectmn of errors in discrete messages.

If the measured quantxt:es n take on arbitrary real values, we can
consider the ndxmensxonai vector space R" as our space of information.
The distance d(£, n) between points of this space can be defined to fit the
experiment bcmg carried out. But,most frequently, a metric ¢ of the

- form "
[ .

d(é,n) = Vi(x, — I F -t (n — T (8.1)

is used, for which the space of information is ;™.
Let N < R" be a subset of this space of informatiofi.
As a'**correct”” message, we take the vector n € N “closest” to the
message ¢ that is received, that is, a vector » such that D '

| = i ) 8.2)
weN
' ”~

(if sucha vector exists). It can be shown that in the interesting cases (for
example when the set N consists of all vectors which require the x; to lie

{ :
‘60 «
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along some curve when plotted against time coordinates £) such a
minimum exists, and thus so does the vector 7. For the metric defined

by (8.1), this Principle is commonly known as the method of least

squares, a method in\goduced by the great German mathematician Karl

Friedrich Gauss. . L
Let us examine a jconcrete example of a subset of theoretically

possible ‘messages. We suppose that the measured quantity changes

linearly with respect to time, that is, if y is the measured quantity,

" - ‘

y=kt+b,

where k and b are some constants and ¢ is the time.?
This means that each vector € N has the form » = ( Y Yar oo o Vo),
where

' . y1=kt}+b,\

)’2=kf2+b,

Ya=kiy + b.

" Let the vector actually obtained by measuring this quantity be equal

'to é = (xy, X3, ..., X,). The fundamental condition (8.2) is now written
- as follows: ' ‘

I ( *"

F(k, ) = (ktik b = %) + (ki + b = xaf* +-- + (kty + b — x)* "
=amin. . ‘

In the expression F(k, b), the unknowns are the parameters £k and &

defining the unknown theoretically possible messages; the quantities
ty, ta, ..., 1, and xy, Xz, ..., X, are experimentally known. s

To ﬁnd the minimum value af the quantity F(k, b), we use a criterion
from differential calculus: :

oF oF
*a“k ——0, "55 =99 ' (8‘3)

. For the sake of simplicity, we shall assume that the error involved in defining
momcms of time ¢, is negligible.

~J

()
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whxch in the given case of a posxtxve quadratic ?unctxon F(k b), is
necessary and sufficient for a minimum. °

Let us calculate the partial derivatives:

-

b
o = 2kt + b - x) +oo ok 2kt + b = x2),
' : 8%
oF :
25 = =2(kty + b — x1) +--- + 2kt + b - xy).
For gonvenience, we denote
(7] = 1% + tagt -+ 1,3, -
=t +ta+ -+ ta,

. [1x] = thxy + tax3 + - -+ tpXn,
Ixl=xi + X3+ + X,
Ml=1414-+1=n.

The expression (8.4) can then be wr_itten in the form
b .o g = 2[t31k + 2[t1b — 2[tx],
(8.5)
%f =20tk + 2[1]b — 2[x].

Setting these exprgs#tons equal to zero in accordance with (8.3), dividing
by two, and transferring the free terms to the right side, we get the
fundamental equation of the method of least squares in symbolic form:

[12 ]k + [11b = [tx], } )(8.6)

[t} + {1} = [x].

Figure 8.1 pictures meusured values x,, Xz, X3, Xg, X5, Xg, X7, X, and the
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. Table 8.1 |
X ! 1] Fexy B

1 0.20 0.30 o 0.06 0.08

. 2 0.43 0.91 0.39 0.83
3 0.35 1.50 0.53 225
4 0.52 2.00 1.04 4.00
5 0.81 - 2.20 - 1.78 \ 4.84
6 ., 0.68 2.62 1.79 6.86
7 1.15 3.00 345 ® 9.00
8 0.85 3.30 2.81 10.89
)3 [x] = 4.79 [t]1=15.83 [ix]= 1185 [#7] = 38.76

straight line y = kt\+ b defined according to the method of least
squares. The figure makes it cleal why we speak of the “smoothing” of
ersors. T
Table 8.1 shows the order in which the calculatmn is earried out.
The system (8.6) in this case has the form
4

38.76k + 15.83b = 11.85,
15.83k + 86 ='4.79.

'The solution is k = 0.319, & = —0.032. The unknown * message”” is
y = 0.3197 — 0.032.

Analogously, if the set of theoretically possible messages N consists -

of all parabolic fupctions of the form y = at? + bt + c, then the funda-
mental condition ?7.1 1) can be written in the form \

F(a,b ¢) = (at? + bty + ¢ - x4t (@2 b1, + ¢ — x,)?
N = mm

The minimizing of the functions F(a, b, ¢) reduces to the solution of a
system of three lincar cquatxons in three unknown parameters «a, b,
and c.

The method of least squares can also be casily carried out infhe case
of.a metric & of the form

d(é ) = a(xy — y1)? 4 waxo - ya)® + 0+ an(x, - 2, (87)

where £ = (xy, Xg, .. ., X,) and 5 = (¥, ¥3, .. -, ¥y) are clements of R,
and ay, ag,..., o, are posmve real numbers (weights). Unequal weights
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must be employed if it is known that separate measurements in the
experiment are not equally exact. In this case, it is necessary to aSSIgn
smaller weights to less accuraté measurements,

The fundamental principle (8.2) for the smoothing of errors can also
be applied to the metrics of the spaces C™ and /;V. However, in these
cases, methods of determining the sef of theoretxcally possible messages
~ are more complicated. 4 \
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General Deﬁmﬁon
f Distance

,As we have already stated, various generalizations of the notion of
distance are possible. One of the most radical is used in the theory
of relativity, where we_ consider the space-time universe consisting: of.
points of the form (x, y, z, 1), where x, y, and z are spatial coordinates
and ¢ is the time coordinate. The distance (space-time interval) between .
two such points is defined by the‘,;fgrmula .

Ao = VA - —G =m0y -G —aF, ©.D

where c is the speed of light. It is clear that the metric 4 can assume n
imaginary as well as real values. .
It is also possible to generalize the concept of distance by assuming

that a function d, satisfying axioms 1, 2, 3, and 4 (chap. 3, page 12), can
have infinite value.® In this case, however, the space could be partitioned
into disjoint subsets, each of which would be a metric space in the usual
senge. Consequently, such a generalization is not very mterestmg The
pro?f of this fact can € sketched as follows.

- Examining such a *“generalized” space E, let us say two elements
‘M and N of E are “equivalent” if the distance d(M,N) is finite. Then,
clearly, each point M is equivalent to itself, and if M is equivalent to &,
N is equivalent to M (d(N,M) = d(M,N)). If M is equivalent to L and
L is equivalent to A, then since :

d(M,N) < d(M,L) + d(L,N),

d(M,N) is finite and M is equivalent to N. Thus the relation of “equiv- ,
alence” partitions the space E into “equivalence classes,” each of.
which is an ordinary metric space with a finite distance function.

1. More precisely, the value +cc. . §

L
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What this example points out is that it is no simple matter to come up
with a2 meaningful generalization of an abstract mathematical concept.
In every gase, such a generalization must come from a deep study of the
mathematical objects invoived and not simply from a formal manipula-
tion of axloms The abortive attempt described above notwithstanding,
there do e @ number of m&amﬁgful generalizations of the concept of
metric space one of which we shall study further. By giving up the '
axiom of symagetry (axiom 1), we obtain a class of spaces which is
connected with some ngterestmg mathematical objects.

We shall define a generalized metric space to be a set E and a function
d: E x E—> R (meaning that d has as its domain the Cartesian product
of E with itself and as its range the real numbers) with the following
properties (here £, 5, and { are elements of E ):

pLQy LdéEm =z
2. The double equality d(£, ) = d(», ) = () is satisfied if and only if
£ =1

3. d(g, ) < d(&, D +d(Z, ).

Clearly, any ordinary diStance
function satisfies these conditions.
However, a function nonsymmetric
with respect to its arguments can also
satisfy axioms 1, 2, and 3. In fact, we
introduced such a nonsymmetric
distance function at the. end of
chapter 4 in connection with the
definition of distance as the minimal
time required for travel from one

Fig. 9.1 point to another. Since a journey in

the opposite direction may require

more time, this metric is, in general, not symmegtric, but the triangle
inequality (and axioms 1 and 2) are edsily verified.

Another nonsymmetric distance function is definable on the space
consisting of the ten vertices of the diagram in figure 9.1.

The distance d(M,, M,) between the points M, and M, is defined as
the minimal number of line segments passing against the arrows in a
path joining M, and M,.

I'or example,

d(M;, Myo) = 4, d(Mio, M) =0
\d(M:s, Me),,=/§; d(Mg, My) = 1; andsoon.
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1

Clearly, d(M,, M,) > 0. The condition d(M,, M) = d\M,, M) =

. (both distances being zero) means that it is possible to join the point M,
to the point A4, and to join M, to M, by means of line segments directed
with the arrows; that is, M, and M, are vertices of a closed path on
which all arrows go the same way. As there are no such loops in figure
9.1, the equality d(M,, M,) = d(M,, M) = 0 implies that the points M,
and M; coincide. Thus, conditions 1 and 2 hold for this nonsymmetnc
distance function.

The triangle inequality can be verified by the following argument. We
examine a path with the minimal number of segments directed against
the arrows joining M, to M, and an analogous path from M, to M.

.. Joining these paths, we obtain a path from M, to M, with the number of-
line segments directed against the arrows equal to d(M,, M.) +
d(M,, M)). Since in the “shortest” path from M, to M,, the number of
such segments is at least as small,

d(M,, M)) < d(M,, M) + d(M, M) . 9.2)
In this example it is possible to defmen a new metric d* by the rule

0, M) = d(, M) %d(M,, My. 03

Clearly d*(M,, M,) possesscs the propemes of an ordinary metric.
The analogous proposition is true m an arbitrary generalized metnc
space.

THEOREM If (S, d) is a generalized metric space and d*: S x S—>R
is defined by g

e = den) Fdm . 04

-
then (S, d*) is a metric space in the ordinary sense.

Proof. The symmetry of the metric d* follows because the right side
of (9.4) does not change upon interchanging ¢ and ». The equality
d*(¢, %) = 0 is equivalent to the double equality d(§, ) = d(n, §) = 0
(since d takes on no negative values) and is therefore equivalent to the
statement ¢ = 7. Finally, since ' :

A d(¢, m) < d(¢,§) + di, m) %

and

dn, &) < don O + d, O,
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we get ©
o j

d, ) + dem, ) < dE D+ G ) + d ) + d( D,

or} ’ ) |
.‘ () 5 4% Dyt ). / |
and so the triangle inequality holds for the metric d*. 5

Another interesting example of a generalized metric space can
obtained using the important concept of a partigliy ordered set.

. A set Sissaid to be partially ordered if for some ordered pairs of

points (M, N)e § x S, the relation M ( N (read M precedes N) is

defined and satisfies the following axioms: ‘ ‘
I f M (N and N({ M, théen M = N (antisymmetry).

2. If M (N and N (L, then M ( L (transitivity). _

- An example of a partially ordered set is the set of verticesin figure9.1,
We set M, ( M, if there is a path joining M, to M, which moves only in
the direction of the arrows. For example, My ( M1o, M, ( M3, M; ( Mg,
M, ( M,. .

A second example is obtained by considering ( to denote the relation
“ <" on the real line; that is, x { y if Gnd only if x < y. In this case, it
is clear that for cach pair of distinet points x and }Mr y(x
is valid. A set with such an ordering (in which for air of distinct
points x and y, either x { y or y { x) is said to be linearly ordered by (.

In any partially ordered set it is possible to introduce the notion of an
immediate prédecessor. -

A point M is said to immediately precgé: a point N (and we write
M O N)if M ( Nand there is no third point L different from Af and N
lying “betwcenm and N; that is, such that M ( L ( V.

Forexample, in figure 9.1, M, O M3, M, O M, M O M,, and soon.

No real number has an immediate predecessor, for if x (y, then

x({x+ y)2(y sincex <(x+ 2 <y

We now consider a finite partially ordered set E and suppose that that
set has the property of connectedness; that is, for each pair of points M
and N in F there exists a sequence of points M = L, L,,...,L, = N
such that for each i with | < i <k — 1, either Ly (L;,, or L, ( L;.

For the points M; and Mg in figure 9.1, for examiple, we can construct
" such a sequence as follows:

!

Ly=My;, Ly=My;  Ly=M;; Lq=Msg,
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© since

x((Ms;. M?(M;; M ( M.

We leave it to the rekder to check that the set of vertices in figure 9.11s
connected. '
: The set of points in figure 9.2 is not
connected, since for the points Mg and
M, such a connecting sequence does
not exist. However, the subsets E, =
M, Mo, M, M} and E; = {Ms, My,
M., Mg} are connected. One can easily
verify that any finite partially ordered
set can be partitioned into disjoint
connected subsets. '
: We are now in a position to introduce
Fig. 9.2 ~ into an arbitrary partially ordered set £
a metric 4 defined according to the
following rule. We first define a path from a point M to a point N to be
a chain of points M = L,, Ly, ..., L, = N such that for each j with
1 <i <k —Xeither L, Q L4, or Li,; OL. We then define the
distance d(M, N) to be the length of the shortest path from Af to N—the
length of a path being defined as the number of integers i such that
1 si<k.,—1and L, QL (that is, the number of steps *‘against
the arrows”’).
The nonnegativity of the distance d(M, V) follows from thelefinition.
- For the proof of the second axiom of distance e note that for distinct
/ points M and N, the condition d(M, N) = 0 xmphes that there exists a
" chain of points M = Ly, Ly, ..., L, = N such that L, O L, and, in
particular, that L, ( L, for each i. But then, by the second axiom
(transitivity) for partially ordered sets, we get that M ( N. Analogously,
from the condition d(N, M) = 0, it follows that N ( M. Thus, if
d(M, N) = d(N, M) = Qis satisfied, M ( N and N ( M; so, by the first
axiom (antisymmetry) for partially ordered sets, A = N. Conversely,
if M = N, then the length d(M, N) of the shortest path from M to ¥
and the length d(N, M) of the shortest path from N to M are equal to
zero. So the metric 4 satisfies the second condition for a generalized
metric. ‘
For the proof of the third axiom (the triangle inequality) we employ
a familiar -method. Taking a shortest path M = L;, La,..., Ly = @
from M to Q and a shortest path Q= Lle,y,. .. Loy, = N from
QOto N,weformapath M = L, L"f’ Wb = Q= L, Lyyq,s: oliys
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= N from M to N. The total number of pairs of adjacent points in this.
chain for which L, ; O L, is equal to the sum of the distances d(M, Q)
and d(Q, N). Clearly, the number of such paxrs in the shortest path
from M to N can cnly be smaller: . "«

dM, N) < dM, Q) + d(Q, N). (9.5

And we have shown that for any finite connected partially ordered set

E we can define a metric d so that (£, d) forms a metric space. '
~ As an exercise, we suggest that the reader prove that for every pair of -
points M and N where M ( N, the distance d(M, N) = 0.

. In" a sense, the converse assertion is also true. In any generalized
memc space (E, d) it is possible to introduce a partial ordering ( defined
by M ( N if d(M, N) = 0.

- To prove this, we must show that both axioms for a partial ordering ‘

. are satisfied. If M (N and N{ M, then d(M, N) = d(N, M) = 0, and
by the second condition for a generalized metric, M = N. The first
axiom for pamally ordercd sets 1\hus proved.

Now let M((L and L ( N. Then d(M, L) = 0 and d(L, N) = 0. By
the triangle mequahty

<

d(M, N) < dM, L) + d(L, N) = 0;

' but by nonnegativity, 0 < d(M, N), and s0 0 < d(M, N) < O; that is,
~d(M, N) = 0.and M((N

_'Thus, we have shown that if A (Land L{ N then M ( V.

The partially ordered set whxch we obtain in this way need not be
connected. :

Examining, for example, the partially ordered set E of the points in
figure 9.2, one can definc Between' pairs of points from the subset
E, = {M,, M,, My, M} a distance by means of the shortest path. The
same can be done for the subset E, = {M;, My, M,, Mg}. We further
dgfine the distance between a point M, e £, and a point M, e E; by

d(M,, M) = d(M;, M) = 100. (9.6)

It is easy to verify that we get a generalized metric space in which the
equality d(M, N) -= 0is equivalent o the relation M ( Nen the partially
ordered set £. As we have already remarked, however, £ is not a
connected set.

It is possible, however, to introduce the notion of a connected
generalized metric space. The space (F, d) is said to be connected if for
uny pair of (not necessarily distinct) points M and N of £ there exists a
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“chain of points M = L,,Lg,..., L. = N such that for each adjacent
pair of points 'Lg and Ly, exther d(Li, Liyy) =0 or d(Liyy, L) = 0.
We leave it to the reader to verify that any connected generalized metric
space corresponds to a connected partially ordered set.

A finite partially ordered set (and the corresponding metric space)
can be represented geometrically in a very simple manner. We depict the
elements of the partiaily ordered set as points in three-dimensional space
. denoted by the same letters as the corresponding elements. We join each
pair of points M and N for which M O N by a line segment directed
from N to M, indicating the direction by an arrow. The geometric
- figure obtained, consisting of the’ points (vertices) and the diregted line
" segments joining them, is called a graph. We have already seen examples

of graphs in figures 9.1 and 9.2. ‘

" Jtis easy to see that if M ( N, it is possible to travel from N to M by
means of a path that moves only in the direction of the arrows.

Metric spaces with nonsymmetric distance functions arc especially
_important in the cancept of a discrete topological space.

With this we conclude our study of the concept of distance. We have

established that this concept in its many different aspects is connected
fiot only with profems in pure mathematics, but with such practical
problems as the construction of error-stabilizing codes. This multiplicity
of applications and the complicated logical connections are charactens-
tic of other essential mathematical concepts as well.- The prmmpal
motivation for the creation of such concepts liés in the possibility of
connections and analogies to seemingly unrelated fields and in the need
to discover the hidden principles upon which mathematical properties
depend. ’
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